Codeforces 670 - A/B/C/D/E/F - (Done)

連接:https://codeforces.com/contest/670html


A - Holidays - [水]

AC代碼:ios

#include<bits/stdc++.h>
using namespace std;
int n;
int main()
{
    cin>>n;
    int q=n/7, r=n%7;
    int least=q*2;
    int a,b;
    if(r==0) a=b=0;
    if(r==1) a=0, b=1;
    if(2<=r && r<=5) a=0, b=2;
    if(r==6) a=1, b=2;
    printf("%d %d\n",least+a,least+b);
}

 


B - Game of Robots - [水]

AC代碼:c++

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+10;
int n;
ll k;
int id[maxn];
int main()
{
    cin>>n>>k;
    for(int i=1;i<=n;i++) scanf("%d",&id[i]);

    ll p;
    for(p=1;p<=n;p++)
        if((p-1)*p/2<k && k<=p*(p+1)/2) break;
    k-=(p-1)*p/2;
    cout<<id[k]<<endl;
}

 


C - Cinema - [離散化+排序]

AC代碼:spa

#include<bits/stdc++.h>
using namespace std;
const int maxn=2e5+10;
const int maxm=2e5+10;
int n,m;
int a[maxn],cnt[maxn+2*maxm];

vector<int> v;
inline int getID(int x){return lower_bound(v.begin(),v.end(),x)-v.begin()+1;}
inline int getVal(int id){return v.at(id-1);}

struct Mo{
    int id;
    int x,y;
}mo[maxm];
bool cmp(const Mo& a,const Mo& b)
{
    if(cnt[a.x]==cnt[b.x]) return cnt[a.y]>cnt[b.y];
    else return cnt[a.x]>cnt[b.x];
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);

    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i], v.push_back(a[i]);
    cin>>m;
    for(int i=1;i<=m;i++) cin>>mo[i].x, v.push_back(mo[i].x);
    for(int i=1;i<=m;i++) cin>>mo[i].y, v.push_back(mo[i].y);

    sort(v.begin(),v.end());
    v.erase(unique(v.begin(),v.end()),v.end());
    for(int i=1;i<=n;i++)
    {
        a[i]=getID(a[i]);
        cnt[a[i]]++;
    }
    for(int i=1;i<=m;i++)
    {
        mo[i].id=i;
        mo[i].x=getID(mo[i].x);
        mo[i].y=getID(mo[i].y);
    }

    sort(mo+1,mo+m+1,cmp);
    cout<<mo[1].id<<endl;
}

 


D - Magic Powder - [二分]

題解:code

二分能生產的餅乾數目,對於一個餅乾數目 $x$ 咱們能夠 $O(n)$ 判斷出是否可行。htm

AC代碼:blog

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e5+10;
int n;
ll k,a[maxn],b[maxn];

bool check(ll x)
{
    ll need=0;
    for(int i=1;i<=n;i++)
    {
        if(x*a[i]>b[i]) need+=x*a[i]-b[i];
        if(need>k) return 0;
    }
    if(need>k) return 0;
    else return 1;
}

int main()
{
    cin>>n>>k;
    for(int i=1;i<=n;i++) scanf("%I64d",&a[i]);
    for(int i=1;i<=n;i++) scanf("%I64d",&b[i]);

    ll up=INF;
    for(int i=1;i<=n;i++) up=min(up,(b[i]+k)/a[i]);

    ll l=0, r=up;
    while(l<r)
    {
        ll mid=(l+r+1LL)/2;
        if(check(mid)) l=mid;
        else r=mid-1;
    }
    cout<<l<<endl;
}

 


E - Correct Bracket Sequence Editor - [線段樹][鏈表][對頂棧]

一、線段樹作法排序

二、鏈表作法ci

三、對頂棧作法字符串

 


F - Restore a Number - [字符串]

相關文章
相關標籤/搜索