目標檢測數據加強方法

def letterbox_image(img, inp_dim):
    '''resize image with unchanged aspect ratio using padding
    
    Parameters
    ----------
    
    img : numpy.ndarray
        Image 
    
    inp_dim: tuple(int)
        shape of the reszied image
        
    Returns
    -------
    
    numpy.ndarray:
        Resized image
    
    '''

    inp_dim = (inp_dim, inp_dim)
    img_w, img_h = img.shape[1], img.shape[0]
    w, h = inp_dim
    new_w = int(img_w * min(w/img_w, h/img_h))
    new_h = int(img_h * min(w/img_w, h/img_h))
    resized_image = cv2.resize(img, (new_w,new_h)) # 按照target_szie/(長邊)爲scale進行resize,而後填充空白區域
    
    canvas = np.full((inp_dim[1], inp_dim[0], 3), 0)

    canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-new_w)//2 + new_w,  :] = resized_image
    
    return canvas

class Resize(object):
    """Resize the image in accordance to `image_letter_box` function in darknet 
    
    The aspect ratio is maintained. The longer side is resized to the input 
    size of the network, while the remaining space on the shorter side is filled 
    with black color. **This should be the last transform**
    
    
    Parameters
    ----------
    inp_dim : tuple(int)
        tuple containing the size to which the image will be resized.
        
    Returns
    -------
    
    numpy.ndaaray
        Sheared image in the numpy format of shape `HxWxC`
    
    numpy.ndarray
        Resized bounding box co-ordinates of the format `n x 4` where n is 
        number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
        
    """
    
    def __init__(self, inp_dim):
        self.inp_dim = inp_dim
        
    def __call__(self, img, bboxes):
        w,h = img.shape[1], img.shape[0]
        img = letterbox_image(img, self.inp_dim) # 按照target_szie/(長邊)爲scale進行resize,而後填充空白區域
    
    
        scale = min(self.inp_dim/h, self.inp_dim/w)
        bboxes[:,:4] *= (scale)
    
        new_w = scale*w
        new_h = scale*h
        inp_dim = self.inp_dim   
    
        del_h = (inp_dim - new_h)/2
        del_w = (inp_dim - new_w)/2
    
        add_matrix = np.array([[del_w, del_h, del_w, del_h]]).astype(int)
    
        bboxes[:,:4] += add_matrix # 根據空白區域補充
    
        img = img.astype(np.uint8)
    
        return img, bboxes 

class RandomHorizontalFlip(object):

    """Randomly horizontally flips the Image with the probability *p*

    Parameters
    ----------
    p: float
        The probability with which the image is flipped


    Returns
    -------

    numpy.ndaaray
        Flipped image in the numpy format of shape `HxWxC`

    numpy.ndarray
        Tranformed bounding box co-ordinates of the format `n x 4` where n is
        number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box

    """

    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, img, bboxes):
            img_center = np.array(img.shape[:2])[::-1]/2 # 獲得圖像中心座標(x,y)
            img_center = np.hstack((img_center, img_center))
            if random.random() < self.p:
                img = img[:, ::-1, :]  # 圖像水平翻轉
                bboxes[:, [0, 2]] += 2*(img_center[[0, 2]] - bboxes[:, [0, 2]]) # 將box(x1,y1,x2,y2)的x座標翻轉,

                box_w = abs(bboxes[:, 0] - bboxes[:, 2])

                bboxes[:, 0] -= box_w  # 翻轉後的座標,x1>x2;該操做交換座標,使得x1<x2
                bboxes[:, 2] += box_w

            return img, bboxes

class RandomScale(object):
    """Randomly scales an image    
    
    
    Bounding boxes which have an area of less than 25% in the remaining in the 
    transformed image is dropped. The resolution is maintained, and the remaining
    area if any is filled by black color.
    
    Parameters
    ----------
    scale: float or tuple(float)
        if **float**, the image is scaled by a factor drawn 
        randomly from a range (1 - `scale` , 1 + `scale`). If **tuple**,
        the `scale` is drawn randomly from values specified by the 
        tuple
        
    Returns
    -------
    
    numpy.ndaaray
        Scaled image in the numpy format of shape `HxWxC`
    
    numpy.ndarray
        Tranformed bounding box co-ordinates of the format `n x 4` where n is 
        number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
        
    """

    def __init__(self, scale = 0.2, diff = False):
        self.scale = scale

        
        if type(self.scale) == tuple:
            assert len(self.scale) == 2, "Invalid range"
            assert self.scale[0] > -1, "Scale factor can't be less than -1"
            assert self.scale[1] > -1, "Scale factor can't be less than -1"
        else:
            assert self.scale > 0, "Please input a positive float"
            self.scale = (max(-1, -self.scale), self.scale)
        
        self.diff = diff

        

    def __call__(self, img, bboxes):
    
        
        #Chose a random digit to scale by 
        
        img_shape = img.shape
        
        if self.diff:
            scale_x = random.uniform(*self.scale)
            scale_y = random.uniform(*self.scale)
        else:
            scale_x = random.uniform(*self.scale)
            scale_y = scale_x
            
    
        
        resize_scale_x = 1 + scale_x
        resize_scale_y = 1 + scale_y

        # The logic of the Scale transformation is fairly simple.
        # We use the OpenCV function cv2.resize to scale our image, and scale our bounding boxes by the scale factor(s).
        img=  cv2.resize(img, None, fx = resize_scale_x, fy = resize_scale_y)
        
        bboxes[:,:4] *= [resize_scale_x, resize_scale_y, resize_scale_x, resize_scale_y]
        
        
        
        canvas = np.zeros(img_shape, dtype = np.uint8) # 原始圖像大小
        
        y_lim = int(min(resize_scale_y,1)*img_shape[0])
        x_lim = int(min(resize_scale_x,1)*img_shape[1])
        
        
        canvas[:y_lim,:x_lim,:] =  img[:y_lim,:x_lim,:] # 有可能變大或者變小,若是變大,取其中一部分,變小,黑色填充
        
        img = canvas
        bboxes = clip_box(bboxes, [0,0,1 + img_shape[1], img_shape[0]], 0.25) # 對變換後的box:處理超出邊界和麪積小於閾值drop操做;
    
    
        return img, bboxes

class RandomTranslate(object): # 隨機平移
    """Randomly Translates the image    
    
    
    Bounding boxes which have an area of less than 25% in the remaining in the 
    transformed image is dropped. The resolution is maintained, and the remaining
    area if any is filled by black color.
    
    Parameters
    ----------
    translate: float or tuple(float)
        if **float**, the image is translated by a factor drawn 
        randomly from a range (1 - `translate` , 1 + `translate`). If **tuple**,
        `translate` is drawn randomly from values specified by the 
        tuple
        
    Returns
    -------
    
    numpy.ndaaray
        Translated image in the numpy format of shape `HxWxC`
    
    numpy.ndarray
        Tranformed bounding box co-ordinates of the format `n x 4` where n is 
        number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
        
    """

    def __init__(self, translate = 0.2, diff = False):
        self.translate = translate
        
        if type(self.translate) == tuple:
            assert len(self.translate) == 2, "Invalid range"  
            assert self.translate[0] > 0 & self.translate[0] < 1
            assert self.translate[1] > 0 & self.translate[1] < 1


        else:
            assert self.translate > 0 and self.translate < 1
            self.translate = (-self.translate, self.translate) # 必須在(0-1)之間
            
            
        self.diff = diff

    def __call__(self, img, bboxes):        
        #Chose a random digit to scale by 
        img_shape = img.shape
        
        #translate the image
        
        #percentage of the dimension of the image to translate
        translate_factor_x = random.uniform(*self.translate)
        translate_factor_y = random.uniform(*self.translate)
        
        if not self.diff:
            translate_factor_y = translate_factor_x
            
        canvas = np.zeros(img_shape).astype(np.uint8)
    
    
        corner_x = int(translate_factor_x*img.shape[1])
        corner_y = int(translate_factor_y*img.shape[0])

        #change the origin to the top-left corner of the translated box  # 至關於作一個平移操做,作超過邊界處理等
        orig_box_cords =  [max(0,corner_y), max(corner_x,0), min(img_shape[0], corner_y + img.shape[0]), min(img_shape[1],corner_x + img.shape[1])]

        mask = img[max(-corner_y, 0):min(img.shape[0], -corner_y + img_shape[0]), max(-corner_x, 0):min(img.shape[1], -corner_x + img_shape[1]),:]
        canvas[orig_box_cords[0]:orig_box_cords[2], orig_box_cords[1]:orig_box_cords[3],:] = mask
        img = canvas
        
        bboxes[:,:4] += [corner_x, corner_y, corner_x, corner_y] # box作一個平移操做
        
        
        bboxes = clip_box(bboxes, [0,0,img_shape[1], img_shape[0]], 0.25)
        
        return img, bboxes

class RandomRotate(object):
    """Randomly rotates an image    
    
    
    Bounding boxes which have an area of less than 25% in the remaining in the 
    transformed image is dropped. The resolution is maintained, and the remaining
    area if any is filled by black color.
    
    Parameters
    ----------
    angle: float or tuple(float)
        if **float**, the image is rotated by a factor drawn 
        randomly from a range (-`angle`, `angle`). If **tuple**,
        the `angle` is drawn randomly from values specified by the 
        tuple
        
    Returns
    -------
    
    numpy.ndaaray
        Rotated image in the numpy format of shape `HxWxC`
    
    numpy.ndarray
        Tranformed bounding box co-ordinates of the format `n x 4` where n is 
        number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
        
    """

    def __init__(self, angle = 10):
        self.angle = angle
        
        if type(self.angle) == tuple:
            assert len(self.angle) == 2, "Invalid range"  
            
        else:
            self.angle = (-self.angle, self.angle)
            
    def __call__(self, img, bboxes):
    
        angle = random.uniform(*self.angle)
    
        w,h = img.shape[1], img.shape[0]
        cx, cy = w//2, h//2
    
        img = rotate_im(img, angle) # 旋轉後,爲了保證整圖信息,仿射後的圖像變大,先求仿射矩陣,而後變換整圖;
    
        corners = get_corners(bboxes) # 獲得四個角點
    
        corners = np.hstack((corners, bboxes[:,4:]))
    
    
        corners[:,:8] = rotate_box(corners[:,:8], angle, cx, cy, h, w) # 根據仿射矩陣獲得box旋轉後的座標
    
        new_bbox = get_enclosing_box(corners) # we have to find the tightest rectangle parallel to the sides of the image containing the tilted rectangular box.
    
    
        scale_factor_x = img.shape[1] / w
    
        scale_factor_y = img.shape[0] / h
    
        img = cv2.resize(img, (w,h)) # 旋轉後變大的圖像恢復到原圖像大小;
    
        new_bbox[:,:4] /= [scale_factor_x, scale_factor_y, scale_factor_x, scale_factor_y] 
    
        bboxes  = new_bbox
    
        bboxes = clip_box(bboxes, [0,0,w, h], 0.25)
    
        return img, bboxes

class RandomShear(object): # 旋轉的特殊狀況
    """Randomly shears an image in horizontal direction   
    
    
    Bounding boxes which have an area of less than 25% in the remaining in the 
    transformed image is dropped. The resolution is maintained, and the remaining
    area if any is filled by black color.
    
    Parameters
    ----------
    shear_factor: float or tuple(float)
        if **float**, the image is sheared horizontally by a factor drawn 
        randomly from a range (-`shear_factor`, `shear_factor`). If **tuple**,
        the `shear_factor` is drawn randomly from values specified by the 
        tuple
        
    Returns
    -------
    
    numpy.ndaaray
        Sheared image in the numpy format of shape `HxWxC`
    
    numpy.ndarray
        Tranformed bounding box co-ordinates of the format `n x 4` where n is 
        number of bounding boxes and 4 represents `x1,y1,x2,y2` of the box
        
    """

    def __init__(self, shear_factor = 0.2):
        self.shear_factor = shear_factor
        
        if type(self.shear_factor) == tuple:
            assert len(self.shear_factor) == 2, "Invalid range for scaling factor"   
        else:
            self.shear_factor = (-self.shear_factor, self.shear_factor)
        
        shear_factor = random.uniform(*self.shear_factor)
        
    def __call__(self, img, bboxes):
    
        shear_factor = random.uniform(*self.shear_factor)
    
        w,h = img.shape[1], img.shape[0]
    
        if shear_factor < 0:
            img, bboxes = HorizontalFlip()(img, bboxes) # 一種巧妙的方法,來避免...
    
        M = np.array([[1, abs(shear_factor), 0],[0,1,0]])
    
        nW =  img.shape[1] + abs(shear_factor*img.shape[0])
    
        bboxes[:,[0,2]] += ((bboxes[:,[1,3]]) * abs(shear_factor) ).astype(int) 
    
    
        img = cv2.warpAffine(img, M, (int(nW), img.shape[0])) # 只進行水平變換
    
        if shear_factor < 0:
            img, bboxes = HorizontalFlip()(img, bboxes)
    
        img = cv2.resize(img, (w,h))
    
        scale_factor_x = nW / w
    
        bboxes[:,:4] /= [scale_factor_x, 1, scale_factor_x, 1] 
    
    
        return img, bboxes

經過多線程進行加速:html

def parse_data(data):
    img = np.array(cv2.imread(data))
    h, w, c = img.shape
    assert c == 3
    img = cv2.resize(img, (scale_size, scale_size))
    img = img.astype(np.float32)

    shift = (scale_size - crop_size) // 2
    img = img[shift: shift + crop_size, shift: shift + crop_size, :]
    # Flip image at random if flag is selected
    if np.random.random() < 0.5:  # self.horizontal_flip and
        img = cv2.flip(img, 1)
    img = (img - np.array(127.5)) / 127.5

    return img


def parse_data_without_augmentation(data):
    img = np.array(cv2.imread(data))
    h, w, c = img.shape
    assert c == 3
    img = cv2.resize(img, (crop_size, crop_size))
    img = img.astype(np.float32)
    img = (img - np.array(127.5)) / 127.5
return img
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2019/3/10 11:15
# @Author  : Whu_DSP
# @File    : dped_dataloader.py

import multiprocessing as mtp
import os
import cv2
import numpy as np
from scipy import misc


def parse_data(filename):
    I = np.asarray(misc.imread(filename))
    I = np.float16(I) / 255
    return I
class Dataloader: def __init__(self, dped_dir, type_phone, batch_size, is_training, im_shape): self.works = mtp.Pool(10) self.dped_dir = dped_dir self.phone_type = type_phone self.batch_size = batch_size self.is_training = is_training self.im_shape = im_shape self.image_list, self.dslr_list = self._get_data_file_list() self.num_images = len(self.image_list) self._cur = 0 self._perm = None self._shuffle_index() # init order def _get_data_file_list(self): if self.is_training: directory_phone = os.path.join(self.dped_dir, str(self.phone_type), 'training_data', str(self.phone_type)) directory_dslr = os.path.join(self.dped_dir, str(self.phone_type), 'training_data', 'canon') else: directory_phone = os.path.join(self.dped_dir, str(self.phone_type), 'test_data', 'patches', str(self.phone_type)) directory_dslr = os.path.join(self.dped_dir, str(self.phone_type), 'test_data', 'patches', 'canon') # num_images = len([name for name in os.listdir(directory_phone) if os.path.isfile(os.path.join(directory_phone, name))]) image_list = [os.path.join(directory_phone, name) for name in os.listdir(directory_phone)] dslr_list = [os.path.join(directory_dslr, name) for name in os.listdir(directory_dslr)] return image_list, dslr_list def _shuffle_index(self): '''randomly permute the train order''' self._perm = np.random.permutation(np.arange(self.num_images)) self._cur = 0 def _get_next_minbatch_index(self): """return the indices for the next minibatch""" if self._cur + self.batch_size > self.num_images: self._shuffle_index() next_index = self._perm[self._cur:self._cur + self.batch_size] self._cur += self.batch_size return next_index def get_minibatch(self, minibatch_db): """return minibatch datas for train/test""" if self.is_training: jobs = self.works.map(parse_data, minibatch_db) else: jobs = self.works.map(parse_data, minibatch_db) index = 0 images_data = np.zeros([self.batch_size, self.im_shape[0], self.im_shape[1], 3]) for index_job in range(len(jobs)): images_data[index, :, :, :] = jobs[index_job] index += 1 return images_data def next_batch(self): """Get next batch images and labels""" db_index = self._get_next_minbatch_index() minibatch_db = [] for i in range(len(db_index)): minibatch_db.append(self.image_list[db_index[i]]) minibatch_db_t = [] for i in range(len(db_index)): minibatch_db_t.append(self.dslr_list[db_index[i]]) images_data = self.get_minibatch(minibatch_db) dslr_data = self.get_minibatch(minibatch_db_t) return images_data, dslr_data if __name__ == "__main__": data_dir = "F:\\ranjiewen\\TF_EnhanceDPED\\data\\dped" train_loader = Dataloader(data_dir, "iphone", 32, True,[100,100]) test_loader = Dataloader(data_dir, "iphone", 32, False, [100, 100]) for i in range(10): image_batch,label_batch = train_loader.next_batch() print(image_batch.shape,label_batch.shape) print("-------------------------------------------") image_batch,label_batch = test_loader.next_batch() print(image_batch.shape,label_batch.shape)
相關文章
相關標籤/搜索