JavaShuo
欄目
標籤
高維網絡(容斥定理+dp)
時間 2021-01-11
欄目
系統網絡
简体版
原文
原文鏈接
高維網絡 【題目描述】 現在有一個 d 維的座標網格,其中第 i 維座標的範圍是[0,a_i]。在這個範圍內建立一個有向圖:我們把範圍內的每個整點(每一維座標均爲整數的點)當做圖上的頂點。設點 A(0,0,⋯,0),B(a_1,a_2,⋯,a_d)。對於範圍內的點(x_1,x_2,⋯,x_d),它會向以下這些點(如果目標點在範圍內)連有向邊:(x_1+1,x_2,⋯,x_d),(x_1,x_2+1
>>阅读原文<<
相關文章
1.
容斥定理
2.
[ARC093-F][容斥原理][DP]Dark Horse
3.
[ZJOI2016]小星星(容斥+dp)
4.
BZOJ4767-兩雙手-DP+容斥
5.
LOJ6356 四色燈(容斥+dp
6.
[ARC101E]Ribbons on Tree(容斥,dp)
7.
[JSOI2019]神經網絡(樹形DP+容斥+生成函數)
8.
數論 | 容斥定理
9.
Co-prime(容斥定理)
10.
容斥原理
更多相關文章...
•
網絡協議是什麼?
-
TCP/IP教程
•
netwox顯示網絡配置信息
-
TCP/IP教程
•
Docker 清理命令
•
Docker容器實戰(七) - 容器眼光下的文件系統
相關標籤/搜索
高速網絡
網絡理論
網絡管理
網絡代理
高維
網絡
網絡高可用
定理
系統網絡
網站品質教程
網站建設指南
網站主機教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
吳恩達深度學習--神經網絡的優化(1)
2.
FL Studio鋼琴卷軸之工具菜單的Riff命令
3.
RON
4.
中小企業適合引入OA辦公系統嗎?
5.
我的開源的MVC 的Unity 架構
6.
Ubuntu18 安裝 vscode
7.
MATLAB2018a安裝教程
8.
Vue之v-model原理
9.
【深度學習】深度學習之道:如何選擇深度學習算法架構
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
容斥定理
2.
[ARC093-F][容斥原理][DP]Dark Horse
3.
[ZJOI2016]小星星(容斥+dp)
4.
BZOJ4767-兩雙手-DP+容斥
5.
LOJ6356 四色燈(容斥+dp
6.
[ARC101E]Ribbons on Tree(容斥,dp)
7.
[JSOI2019]神經網絡(樹形DP+容斥+生成函數)
8.
數論 | 容斥定理
9.
Co-prime(容斥定理)
10.
容斥原理
>>更多相關文章<<