elasticsearch index 之 Mapping

Lucene索引的一個特色就filed,索引以field組合。這一特色爲索引和搜索提供了很大的靈活性。elasticsearch則在Lucene的基礎上更近一步,它能夠是 no scheme。實現這一功能的祕密就Mapping。Mapping是對索引各個字段的一種預設,包括索引與分詞方式,是否存儲等,數據根據字段名在Mapping中找到對應的配置,創建索引。這裏將對Mapping的實現結構簡單分析,Mapping的放置、更新、應用會在後面的索引fenx中進行說明。app

首先看一下Mapping的實現關係結構,以下圖所示:elasticsearch

這只是Mapping中的一部份內容。Mapping擴展了lucene的filed,定義了更多的field類型既有Lucene所擁有的string,number等字段又有date,IP,byte及geo的相關字段,這也是es的強大之處。如上圖所示,能夠分爲兩類,mapper與documentmapper,前者是全部mapper的父接口。而DocumentMapper則是Mapper的集合,它表明了一個索引的mapper定義。ide

Mapper的有三類,第一類就是核心field結構FileMapper—>AbstractFieldMapper—>StringField這種核心數據類型,它表明了一類數據類型,如字符串類型,int類型這種;第二類是Mapper—>ObjectMapper—>RootObjectMapper,object類型的Mapper,這也是elasticsearch對lucene的一大改進,不想lucene之支持基本數據類型;最後一類是Mapper—>RootMapper—>IndexFieldMapper這種類型,只存在於根Mapper中的一種Mapper,如IdFieldMapper及圖上的IndexFieldMapper,它們相似於index的元數據,只可能存在於某個index內部。post

Mapper中一個比較重要的方法就是parse(ParseContext context),Mapper的子類對這個方法都有各自的實現。它的主要功能是經過解析ParseContext獲取到對應的field,這個方法主要用於創建索引時。索引數據被繼續成parsecontext,每一個field解析parseContext構建對應的lucene Field。它在AbstractFieldMapper中的實現以下所示:ui

    public void parse(ParseContext context) throws IOException {
        final List<Field> fields = new ArrayList<>(2);
        try {
            parseCreateField(context, fields);//實際Filed解析方法
            for (Field field : fields) {
                if (!customBoost()) {//設置boost
                    field.setBoost(boost);
                }
                if (context.listener().beforeFieldAdded(this, field, context)) {
                    context.doc().add(field);//將解析完成的Field加入到context中
                }
            }
        } catch (Exception e) {
            throw new MapperParsingException("failed to parse [" + names.fullName() + "]", e);
        }
        multiFields.parse(this, context);//進行mutiFields解析,MultiFields做用是對同一個field作不一樣的定義,如能夠進行不一樣分詞方式的索引這樣便於經過各類方式查詢
        if (copyTo != null) {
            copyTo.parse(context);
        }
    }

這裏的parseCreateField是一個抽象方法,每種數據類型都有本身的實現,如string的實現方式以下所示:this

protected void parseCreateField(ParseContext context, List<Field> fields) throws IOException {
        ValueAndBoost valueAndBoost = parseCreateFieldForString(context, nullValue, boost);//解析成值和boost
        if (valueAndBoost.value() == null) {
            return;
        }
        if (ignoreAbove > 0 && valueAndBoost.value().length() > ignoreAbove) {
            return;
        }
        if (context.includeInAll(includeInAll, this)) {
            context.allEntries().addText(names.fullName(), valueAndBoost.value(), valueAndBoost.boost());
        }

        if (fieldType.indexed() || fieldType.stored()) {//構建LuceneField
            Field field = new Field(names.indexName(), valueAndBoost.value(), fieldType);
            field.setBoost(valueAndBoost.boost());
            fields.add(field);
        }
        if (hasDocValues()) {
            fields.add(new SortedSetDocValuesField(names.indexName(), new BytesRef(valueAndBoost.value())));
        }
        if (fields.isEmpty()) {
            context.ignoredValue(names.indexName(), valueAndBoost.value());
        }
    }

//解析出字段的值和boost
public static ValueAndBoost parseCreateFieldForString(ParseContext context, String nullValue, float defaultBoost) throws IOException { if (context.externalValueSet()) { return new ValueAndBoost((String) context.externalValue(), defaultBoost); } XContentParser parser = context.parser(); if (parser.currentToken() == XContentParser.Token.VALUE_NULL) { return new ValueAndBoost(nullValue, defaultBoost); } if (parser.currentToken() == XContentParser.Token.START_OBJECT) { XContentParser.Token token; String currentFieldName = null; String value = nullValue; float boost = defaultBoost; while ((token = parser.nextToken()) != XContentParser.Token.END_OBJECT) { if (token == XContentParser.Token.FIELD_NAME) { currentFieldName = parser.currentName(); } else { if ("value".equals(currentFieldName) || "_value".equals(currentFieldName)) { value = parser.textOrNull(); } else if ("boost".equals(currentFieldName) || "_boost".equals(currentFieldName)) { boost = parser.floatValue(); } else { throw new ElasticsearchIllegalArgumentException("unknown property [" + currentFieldName + "]"); } } } return new ValueAndBoost(value, boost); } return new ValueAndBoost(parser.textOrNull(), defaultBoost); }

以上就是Mapper如何將一個值解析成對應的Field的過程,這裏只是簡單介紹,後面會有詳細分析。spa

DocumentMapper是一個索引全部Mapper的集合,它表述了一個索引全部field的定義,能夠說是lucene的Document的定義,同時它還包含如下index的默認值,如index和search時默認分詞器。它的部分Field以下所示:code

    private final DocumentMapperParser docMapperParser;

    private volatile ImmutableMap<String, Object> meta;

    private volatile CompressedString mappingSource;

    private final RootObjectMapper rootObjectMapper;

    private final ImmutableMap<Class<? extends RootMapper>, RootMapper> rootMappers;
    private final RootMapper[] rootMappersOrdered;
    private final RootMapper[] rootMappersNotIncludedInObject;

    private final NamedAnalyzer indexAnalyzer;

    private final NamedAnalyzer searchAnalyzer;
    private final NamedAnalyzer searchQuoteAnalyzer;

DocumentMapper的功能也體如今parse方法上,它的做用是解析整條數據。以前在Mapper中看到了Field是如何解析出來的,那實際上是在DocumentMapper解析以後。index請求發過來的整條數據在這裏被解析出Field,查找Mapping中對應的Field設置,交給它去解析。若是沒有且運行動態添加,es則會根據值自動建立一個Field同時更新Mapping。方法代碼以下所示:orm

    public ParsedDocument parse(SourceToParse source, @Nullable ParseListener listener) throws MapperParsingException {
        ParseContext.InternalParseContext context = cache.get();

        if (source.type() != null && !source.type().equals(this.type)) {
            throw new MapperParsingException("Type mismatch, provide type [" + source.type() + "] but mapper is of type [" + this.type + "]");
        }
        source.type(this.type);

        XContentParser parser = source.parser();
        try {
            if (parser == null) {
                parser = XContentHelper.createParser(source.source());
            }
            if (sourceTransforms != null) {
                parser = transform(parser);
            }
            context.reset(parser, new ParseContext.Document(), source, listener);

            // will result in START_OBJECT
            int countDownTokens = 0;
            XContentParser.Token token = parser.nextToken();
            if (token != XContentParser.Token.START_OBJECT) {
                throw new MapperParsingException("Malformed content, must start with an object");
            }
            boolean emptyDoc = false;
            token = parser.nextToken();
            if (token == XContentParser.Token.END_OBJECT) {
                // empty doc, we can handle it...
                emptyDoc = true;
            } else if (token != XContentParser.Token.FIELD_NAME) {
                throw new MapperParsingException("Malformed content, after first object, either the type field or the actual properties should exist");
            }
            // first field is the same as the type, this might be because the
            // type is provided, and the object exists within it or because
            // there is a valid field that by chance is named as the type.
            // Because of this, by default wrapping a document in a type is
            // disabled, but can be enabled by setting
            // index.mapping.allow_type_wrapper to true
            if (type.equals(parser.currentName()) && indexSettings.getAsBoolean(ALLOW_TYPE_WRAPPER, false)) {
                parser.nextToken();
                countDownTokens++;
            }

            for (RootMapper rootMapper : rootMappersOrdered) {
                rootMapper.preParse(context);
            }

            if (!emptyDoc) {
                rootObjectMapper.parse(context);
            }

            for (int i = 0; i < countDownTokens; i++) {
                parser.nextToken();
            }

            for (RootMapper rootMapper : rootMappersOrdered) {
                rootMapper.postParse(context);
            }
        } catch (Throwable e) {
            // if its already a mapper parsing exception, no need to wrap it...
            if (e instanceof MapperParsingException) {
                throw (MapperParsingException) e;
            }

            // Throw a more meaningful message if the document is empty.
            if (source.source() != null && source.source().length() == 0) {
                throw new MapperParsingException("failed to parse, document is empty");
            }

            throw new MapperParsingException("failed to parse", e);
        } finally {
            // only close the parser when its not provided externally
            if (source.parser() == null && parser != null) {
                parser.close();
            }
        }
        // reverse the order of docs for nested docs support, parent should be last
        if (context.docs().size() > 1) {
            Collections.reverse(context.docs());
        }
        // apply doc boost
        if (context.docBoost() != 1.0f) {
            Set<String> encounteredFields = Sets.newHashSet();
            for (ParseContext.Document doc : context.docs()) {
                encounteredFields.clear();
                for (IndexableField field : doc) {
                    if (field.fieldType().indexed() && !field.fieldType().omitNorms()) {
                        if (!encounteredFields.contains(field.name())) {
                            ((Field) field).setBoost(context.docBoost() * field.boost());
                            encounteredFields.add(field.name());
                        }
                    }
                }
            }
        }

        ParsedDocument doc = new ParsedDocument(context.uid(), context.version(), context.id(), context.type(), source.routing(), source.timestamp(), source.ttl(), context.docs(), context.analyzer(),
                context.source(), context.mappingsModified()).parent(source.parent());
        // reset the context to free up memory
        context.reset(null, null, null, null);
        return doc;
    }

將整條數據解析成ParsedDocument,解析後的數據才能進行後面的Field解析創建索引。blog

總結:以上就是Mapping的結構和相關功能歸納,Mapper賦予了elasticsearch索引的更強大功能,使得索引和搜索能夠支持更多數據類型,靈活性更高。

相關文章
相關標籤/搜索