在明確了ES的基本概念和使用方法後,咱們來學習如何使用ES的Java API.
本文假設你已經對ES的基本概念已經有了一個比較全面的認識。javascript
你能夠用Java客戶端作不少事情:css
可是,經過官方文檔能夠得知,如今存在至少三種Java客戶端。html
形成這種混亂的緣由是:java
長久以來,ES並無官方的Java客戶端,而且Java自身是能夠簡單支持ES的API的,因而就先作成了TransportClient。可是TransportClient的缺點是顯而易見的,它沒有使用RESTful風格的接口,而是二進制的方式傳輸數據。node
以後ES官方推出了Java Low Level REST Client,它支持RESTful,用起來也不錯。可是缺點也很明顯,由於TransportClient的使用者把代碼遷移到Low Level REST Client的工做量比較大。官方文檔專門爲遷移代碼出了一堆文檔來提供參考。編程
如今ES官方推出Java High Level REST Client,它是基於Java Low Level REST Client的封裝,而且API接收參數和返回值和TransportClient是同樣的,使得代碼遷移變得容易而且支持了RESTful的風格,兼容了這兩種客戶端的優勢。固然缺點是存在的,就是版本的問題。ES的小版本更新很是頻繁,在最理想的狀況下,客戶端的版本要和ES的版本一致(至少主版本號一致),次版本號不一致的話,基本操做也許能夠,可是新API就不支持了。json
強烈建議ES5及其之後的版本使用Java High Level REST Client。筆者這裏使用的是ES5.6.3,下面的文章將基於JDK1.8+Spring Boot+ES5.6.3 Java High Level REST Client+Maven進行示例。數組
stackoverflow上的問答:
https://stackoverflow.com/questions/47031840/elasticsearchhow-to-choose-java-client/47036028#47036028bash
詳細說明:session
https://www.elastic.co/blog/the-elasticsearch-java-high-level-rest-client-is-out
參考資料:
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/5.6/java-rest-high.html
Java High Level REST Client 是基於Java Low Level REST Client的,每一個方法均可以是同步或者異步的。同步方法返回響應對象,而異步方法名以「async」結尾,並須要傳入一個監聽參數,來確保提醒是否有錯誤發生。
Java High Level REST Client須要Java1.8版本和ES。而且ES的版本要和客戶端版本一致。和TransportClient接收的參數和返回值是同樣的。
如下實踐均是基於5.6.3的ES集羣和Java High Level REST Client的。
<dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> <version>5.6.3</version> </dependency>
//Low Level Client init RestClient lowLevelRestClient = RestClient.builder( new HttpHost("localhost", 9200, "http")).build(); //High Level Client init RestHighLevelClient client = new RestHighLevelClient(lowLevelRestClient);
High Level REST Client的初始化是依賴Low Level客戶端的
相似HTTP請求,Index API包括index request和index response
構造一條index request的例子:
IndexRequest request = new IndexRequest( "posts", //index name "doc", // type "1"); // doc id String jsonString = "{" + "\"user\":\"kimchy\"," + "\"postDate\":\"2013-01-30\"," + "\"message\":\"trying out Elasticsearch\"" + "}"; request.source(jsonString, XContentType.JSON);
注意到這裏是使用的String 類型。
另外一種構造的方法:
Map<String, Object> jsonMap = new HashMap<>(); jsonMap.put("user", "kimchy"); jsonMap.put("postDate", new Date()); jsonMap.put("message", "trying out Elasticsearch"); IndexRequest indexRequest = new IndexRequest("posts", "doc", "1") .source(jsonMap); //Map會自動轉成JSON
除了String和Map ,XContentBuilder 類型也是能夠的:
XContentBuilder builder = XContentFactory.jsonBuilder();
builder.startObject();
{
builder.field("user", "kimchy"); builder.field("postDate", new Date()); builder.field("message", "trying out Elasticsearch"); } builder.endObject(); IndexRequest indexRequest = new IndexRequest("posts", "doc", "1") .source(builder);
更直接一點的,在實例化index request對象時,能夠直接給出鍵值對:
IndexRequest indexRequest = new IndexRequest("posts", "doc", "1") .source("user", "kimchy", "postDate", new Date(), "message", "trying out Elasticsearch");
IndexResponse indexResponse = client.index(request);
client.indexAsync(request, new ActionListener<IndexResponse>() { @Override public void onResponse(IndexResponse indexResponse) { } @Override public void onFailure(Exception e) { } });
須要注意的是,異步執行的方法名以Async結尾,而且多了一個Listener參數,而且須要重寫回調方法。
在kibana控制檯查詢獲得數據:
{
"_index": "posts", "_type": "doc", "_id": "1", "_version": 1, "found": true, "_source": { "user": "kimchy", "postDate": "2017-11-01T05:48:26.648Z", "message": "trying out Elasticsearch" } }
index request中的數據已經成功入庫。
client.index()方法返回值類型爲IndexResponse,咱們能夠用它來進行以下操做:
String index = indexResponse.getIndex(); //index名稱,類型等信息 String type = indexResponse.getType(); String id = indexResponse.getId(); long version = indexResponse.getVersion(); if (indexResponse.getResult() == DocWriteResponse.Result.CREATED) { } else if (indexResponse.getResult() == DocWriteResponse.Result.UPDATED) { } ShardInfo shardInfo = indexResponse.getShardInfo(); //對分片使用的判斷 if (shardInfo.getTotal() != shardInfo.getSuccessful()) { } if (shardInfo.getFailed() > 0) { for (ReplicationResponse.ShardInfo.Failure failure : shardInfo.getFailures()) { String reason = failure.reason(); } }
對version衝突的判斷:
IndexRequest request = new IndexRequest("posts", "doc", "1") .source("field", "value") .version(1); try { IndexResponse response = client.index(request); } catch(ElasticsearchException e) { if (e.status() == RestStatus.CONFLICT) { } }
對index動做的判斷:
IndexRequest request = new IndexRequest("posts", "doc", "1") .source("field", "value") .opType(DocWriteRequest.OpType.CREATE);//create or update try { IndexResponse response = client.index(request); } catch(ElasticsearchException e) { if (e.status() == RestStatus.CONFLICT) { } }
GetRequest getRequest = new GetRequest( "posts",//index name "doc", //type "1"); //id
同步方法:
GetResponse getResponse = client.get(getRequest);
異步方法:
client.getAsync(request, new ActionListener<GetResponse>() { @Override public void onResponse(GetResponse getResponse) { } @Override public void onFailure(Exception e) { } });
對返回對象的操做:
String index = getResponse.getIndex(); String type = getResponse.getType(); String id = getResponse.getId(); if (getResponse.isExists()) { long version = getResponse.getVersion(); String sourceAsString = getResponse.getSourceAsString(); Map<String, Object> sourceAsMap = getResponse.getSourceAsMap(); byte[] sourceAsBytes = getResponse.getSourceAsBytes(); } else { //TODO }
異常處理:
GetRequest request = new GetRequest("does_not_exist", "doc", "1"); try { GetResponse getResponse = client.get(request); } catch (ElasticsearchException e) { if (e.status() == RestStatus.NOT_FOUND) { } if (e.status() == RestStatus.CONFLICT) { } }
與Index API和 GET API及其類似
DeleteRequest request = new DeleteRequest( "posts", "doc", "1");
同步:
DeleteResponse deleteResponse = client.delete(request);
異步:
client.deleteAsync(request, new ActionListener<DeleteResponse>() { @Override public void onResponse(DeleteResponse deleteResponse) { } @Override public void onFailure(Exception e) { } });
UpdateRequest updateRequest = new UpdateRequest( "posts", "doc", "1");
update腳本:
在以前咱們介紹瞭如何使用簡單的腳原本更新數據
POST /posts/doc/1/_update?pretty
{
"script" : "ctx._source.age += 5" }
也能夠寫成:
POST /posts/doc/1/_update?pretty
{
"script" : { "lang":"painless", "source":"ctx._source.age += 5" } }
對應代碼:
UpdateRequest updateRequest = new UpdateRequest("posts", "doc", "1"); Map<String, Object> parameters = new HashMap<>(); parameters.put("age", 4); Script inline = new Script(ScriptType.INLINE, "painless", "ctx._source.age += params.age", parameters); updateRequest.script(inline); try { UpdateResponse updateResponse = client.update(updateRequest); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); }
String jsonString = "{" + "\"updated\":\"2017-01-02\"," + "\"reason\":\"easy update\"" + "}"; updateRequest.doc(jsonString, XContentType.JSON); try { client.update(updateRequest); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); }
2.Map
Map<String, Object> jsonMap = new HashMap<>(); jsonMap.put("updated", new Date()); jsonMap.put("reason", "dailys update"); UpdateRequest updateRequest = new UpdateRequest("posts", "doc", "1").doc(jsonMap); try { client.update(updateRequest); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); }
3.XContentBuilder
try { XContentBuilder builder = XContentFactory.jsonBuilder(); builder.startObject(); { builder.field("updated", new Date()); System.out.println(new Date()); builder.field("reason", "daily update"); } builder.endObject(); UpdateRequest request = new UpdateRequest("posts", "doc", "1") .doc(builder); client.update(request); } catch (IOException e) { // TODO: handle exception }
4.鍵值對
try { UpdateRequest request = new UpdateRequest("posts", "doc", "1") .doc("updated", new Date(), "reason", "daily updatesss"); client.update(request); } catch (IOException e) { // TODO: handle exception }
若是文檔不存在,可使用upsert來生成這個文檔。
String jsonString = "{\"created\":\"2017-01-01\"}"; request.upsert(jsonString, XContentType.JSON);
一樣地,upsert能夠接Map,Xcontent,鍵值對參數。
一樣地,update response能夠是同步的,也能夠是異步的
同步執行:
UpdateResponse updateResponse = client.update(request);
異步執行:
client.updateAsync(request, new ActionListener<UpdateResponse>() { @Override public void onResponse(UpdateResponse updateResponse) { } @Override public void onFailure(Exception e) { } });
與其餘response相似,update response返回對象能夠進行各類判斷操做,這裏再也不贅述。
以前的文檔說明過,bulk接口是批量index/update/delete操做
在API中,只須要一個bulk request就能夠完成一批請求。
BulkRequest request = new BulkRequest(); request.add(new IndexRequest("posts", "doc", "1") .source(XContentType.JSON,"field", "foo")); request.add(new IndexRequest("posts", "doc", "2") .source(XContentType.JSON,"field", "bar")); request.add(new IndexRequest("posts", "doc", "3") .source(XContentType.JSON,"field", "baz"));
BulkRequest request = new BulkRequest(); request.add(new DeleteRequest("posts", "doc", "3")); request.add(new UpdateRequest("posts", "doc", "2") .doc(XContentType.JSON,"other", "test")); request.add(new IndexRequest("posts", "doc", "4") .source(XContentType.JSON,"field", "baz"));
同步執行:
BulkResponse bulkResponse = client.bulk(request);
異步執行:
client.bulkAsync(request, new ActionListener<BulkResponse>() { @Override public void onResponse(BulkResponse bulkResponse) { } @Override public void onFailure(Exception e) { } });
對response的處理與其餘類型的response十分相似,在這再也不贅述。
BulkProcessor 簡化bulk API的使用,而且使整個批量操做透明化。
BulkProcessor 的執行須要三部分組成:
示例代碼:
Settings settings = Settings.EMPTY;
ThreadPool threadPool = new ThreadPool(settings); //構建新的線程池 BulkProcessor.Listener listener = new BulkProcessor.Listener() { //構建bulk listener @Override public void beforeBulk(long executionId, BulkRequest request) { //重寫beforeBulk,在每次bulk request發出前執行,在這個方法裏面能夠知道在本次批量操做中有多少操做數 int numberOfActions = request.numberOfActions(); logger.debug("Executing bulk [{}] with {} requests", executionId, numberOfActions); } @Override public void afterBulk(long executionId, BulkRequest request, BulkResponse response) { //重寫afterBulk方法,每次批量請求結束後執行,能夠在這裏知道是否有錯誤發生。 if (response.hasFailures()) { logger.warn("Bulk [{}] executed with failures", executionId); } else { logger.debug("Bulk [{}] completed in {} milliseconds", executionId, response.getTook().getMillis()); } } @Override public void afterBulk(long executionId, BulkRequest request, Throwable failure) { //重寫方法,若是發生錯誤就會調用。 logger.error("Failed to execute bulk", failure); } }; BulkProcessor.Builder builder = new BulkProcessor.Builder(client::bulkAsync, listener, threadPool);//使用builder作批量操做的控制 BulkProcessor bulkProcessor = builder.build(); //在這裏調用build()方法構造bulkProcessor,在底層其實是用了bulk的異步操做 builder.setBulkActions(500); //執行多少次動做後刷新bulk.默認1000,-1禁用 builder.setBulkSize(new ByteSizeValue(1L, ByteSizeUnit.MB));//執行的動做大小超過多少時,刷新bulk。默認5M,-1禁用 builder.setConcurrentRequests(0);//最多容許多少請求同時執行。默認是1,0是隻容許一個。 builder.setFlushInterval(TimeValue.timeValueSeconds(10L));//設置刷新bulk的時間間隔。默認是不刷新的。 builder.setBackoffPolicy(BackoffPolicy.constantBackoff(TimeValue.timeValueSeconds(1L), 3)); //設置補償機制參數。因爲資源限制(好比線程池滿),批量操做可能會失敗,在這定義批量操做的重試次數。 //新建三個 index 請求 IndexRequest one = new IndexRequest("posts", "doc", "1"). source(XContentType.JSON, "title", "In which order are my Elasticsearch queries executed?"); IndexRequest two = new IndexRequest("posts", "doc", "2") .source(XContentType.JSON, "title", "Current status and upcoming changes in Elasticsearch"); IndexRequest three = new IndexRequest("posts", "doc", "3") .source(XContentType.JSON, "title", "The Future of Federated Search in Elasticsearch"); //新的三條index請求加入到上面配置好的bulkProcessor裏面。 bulkProcessor.add(one); bulkProcessor.add(two); bulkProcessor.add(three); // add many request here. //bulkProcess必須被關閉才能使上面添加的操做生效 bulkProcessor.close(); //當即關閉 //關閉bulkProcess的兩種方法: try { //2.調用awaitClose. //簡單來講,就是在規定的時間內,是否全部批量操做完成。所有完成,返回true,未完成返//回false boolean terminated = bulkProcessor.awaitClose(30L, TimeUnit.SECONDS); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); }
Search API提供了對文檔的查詢和聚合的查詢。
它的基本形式:
SearchRequest searchRequest = new SearchRequest(); //構造search request .在這裏無參,查詢所有索引 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();//大多數查詢參數要寫在searchSourceBuilder裏 searchSourceBuilder.query(QueryBuilders.matchAllQuery());//增長match_all的條件。
SearchRequest searchRequest = new SearchRequest("posts"); //指定posts索引 searchRequest.types("doc"); //指定doc類型
大多數的查詢控制均可以使用SearchSourceBuilder實現。
舉一個簡單例子:
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); //構造一個默認配置的對象 sourceBuilder.query(QueryBuilders.termQuery("user", "kimchy")); //設置查詢 sourceBuilder.from(0); //設置從哪裏開始 sourceBuilder.size(5); //每頁5條 sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS)); //設置超時時間
配置好searchSourceBuilder後,將它傳入searchRequest裏:
SearchRequest searchRequest = new SearchRequest(); searchRequest.source(sourceBuilder);
在上面的例子,咱們注意到,sourceBuilder構造查詢條件時,使用QueryBuilders對象.
在全部ES查詢中,它存在於全部ES支持的查詢類型中。
使用它的構造體來建立:
MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder("user", "kimchy");
這裏的代碼至關於:
"query": { "match": { "user": "kimchy" } }
相關設置:
matchQueryBuilder.fuzziness(Fuzziness.AUTO); //是否模糊查詢 matchQueryBuilder.prefixLength(3); //設置前綴長度 matchQueryBuilder.maxExpansions(10);//設置最大膨脹係數 ???
QueryBuilder還可使用 QueryBuilders工具類來創造,編程體驗比較順暢:
QueryBuilder matchQueryBuilder = QueryBuilders.matchQuery("user", "kimchy") .fuzziness(Fuzziness.AUTO) .prefixLength(3) .maxExpansions(10);
不管QueryBuilder對象是如何建立的,都要將它傳入SearchSourceBuilder裏面:
searchSourceBuilder.query(matchQueryBuilder);
在以前導入的account數據中,使用match的示例代碼:
GET /bank/_search?pretty
{
"query": { "match": { "firstname": "Virginia" } } }
JAVA:
@Test public void test2(){ RestClient lowLevelRestClient = RestClient.builder( new HttpHost("172.16.73.50", 9200, "http")).build(); RestHighLevelClient client = new RestHighLevelClient(lowLevelRestClient); SearchRequest searchRequest = new SearchRequest("bank"); searchRequest.types("account"); SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); MatchQueryBuilder mqb = QueryBuilders.matchQuery("firstname", "Virginia"); searchSourceBuilder.query(mqb); searchRequest.source(searchSourceBuilder); try { SearchResponse searchResponse = client.search(searchRequest); System.out.println(searchResponse.toString()); } catch (IOException e) { e.printStackTrace(); } }
SearchSourceBuilder能夠添加一種或多種SortBuilder。
有四種特殊的排序實現:
sourceBuilder.sort(new ScoreSortBuilder().order(SortOrder.DESC)); //按照score倒序排列 sourceBuilder.sort(new FieldSortBuilder("_uid").order(SortOrder.ASC)); //而且按照id正序排列
默認狀況下,searchRequest返回文檔內容,與REST API同樣,這裏你能夠重寫search行爲。例如,你能夠徹底關閉"_source"檢索。
sourceBuilder.fetchSource(false);
該方法還接受一個或多個通配符模式的數組,以更細粒度地控制包含或排除哪些字段。
String[] includeFields = new String[] {"title", "user", "innerObject.*"}; String[] excludeFields = new String[] {"_type"}; sourceBuilder.fetchSource(includeFields, excludeFields);
經過配置適當的 AggregationBuilder ,再將它傳入SearchSourceBuilder裏,就能夠完成聚合請求了。
以前的文檔裏面,咱們經過下面這條命令,導入了一千條account信息:
curl -H "Content-Type: application/json" -XPOST 'localhost:9200/bank/account/_bulk?pretty&refresh' --data-binary "@accounts.json"
隨後,咱們介紹瞭如何經過聚合請求進行分組:
GET /bank/_search?pretty
{
"size": 0, "aggs": { "group_by_state": { "terms": { "field": "state.keyword" } } } }
咱們將這一千條數據根據state字段分組,獲得響應:
{
"took": 2, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 999, "max_score": 0, "hits": [] }, "aggregations": { "group_by_state": { "doc_count_error_upper_bound": 20, "sum_other_doc_count": 770, "buckets": [ { "key": "ID", "doc_count": 27 }, { "key": "TX", "doc_count": 27 }, { "key": "AL", "doc_count": 25 }, { "key": "MD", "doc_count": 25 }, { "key": "TN", "doc_count": 23 }, { "key": "MA", "doc_count": 21 }, { "key": "NC", "doc_count": 21 }, { "key": "ND", "doc_count": 21 }, { "key": "MO", "doc_count": 20 }, { "key": "AK", "doc_count": 19 } ] } } }
Java實現:
@Test public void test2(){ RestClient lowLevelRestClient = RestClient.builder( new HttpHost("172.16.73.50", 9200, "http")).build(); RestHighLevelClient client = new RestHighLevelClient(lowLevelRestClient); SearchRequest searchRequest = new SearchRequest("bank"); searchRequest.types("account"); TermsAggregationBuilder aggregation = AggregationBuilders.terms("group_by_state") .field("state.keyword"); SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.aggregation(aggregation); searchSourceBuilder.size(0); searchRequest.source(searchSourceBuilder); try { SearchResponse searchResponse = client.search(searchRequest); System.out.println(searchResponse.toString()); } catch (IOException e) { e.printStackTrace(); } }
輸出:
{"took":4,"timed_out":false,"_shards":{"total":5,"successful":5,"skipped":0,"failed":0},"hits":{"total":999,"max_score":0.0,"hits":[]},"aggregations":{"sterms#group_by_state":{"doc_count_error_upper_bound":20,"sum_other_doc_count":770,"buckets":[{"key":"ID","doc_count":27},{"key":"TX","doc_count":27},{"key":"AL","doc_count":25},{"key":"MD","doc_count":25},{"key":"TN","doc_count":23},{"key":"MA","doc_count":21},{"key":"NC","doc_count":21},{"key":"ND","doc_count":21},{"key":"MO","doc_count":20},{"key":"AK","doc_count":19}]}}}
SearchResponse searchResponse = client.search(searchRequest);
client.searchAsync(searchRequest, new ActionListener<SearchResponse>() { @Override public void onResponse(SearchResponse searchResponse) { } @Override public void onFailure(Exception e) { } });
Search response返回對象與其在API裏的同樣,返回一些元數據和文檔數據。
首先,返回對象裏的數據十分重要,由於這是查詢的返回結果、使用分片狀況、文檔數據,HTTP狀態碼等
RestStatus status = searchResponse.status();
TimeValue took = searchResponse.getTook();
Boolean terminatedEarly = searchResponse.isTerminatedEarly();
boolean timedOut = searchResponse.isTimedOut();
其次,返回對象裏面包含關於分片的信息和分片失敗的處理:
int totalShards = searchResponse.getTotalShards(); int successfulShards = searchResponse.getSuccessfulShards(); int failedShards = searchResponse.getFailedShards(); for (ShardSearchFailure failure : searchResponse.getShardFailures()) { // failures should be handled here }
爲了取回文檔數據,咱們要從search response的返回對象裏先獲得searchHit對象。
SearchHits hits = searchResponse.getHits();
取回文檔數據:
@Test public void test2(){ RestClient lowLevelRestClient = RestClient.builder( new HttpHost("172.16.73.50", 9200, "http")).build(); RestHighLevelClient client = new RestHighLevelClient(lowLevelRestClient); SearchRequest searchRequest = new SearchRequest("bank"); searchRequest.types("account"); SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchRequest.source(searchSourceBuilder); try { SearchResponse searchResponse = client.search(searchRequest); SearchHits searchHits = searchResponse.getHits(); SearchHit[] searchHit = searchHits.getHits(); for (SearchHit hit : searchHit) { System.out.println(hit.getSourceAsString()); } } catch (IOException e) { e.printStackTrace(); } }
根據須要,還能夠轉換成其餘數據類型:
String sourceAsString = hit.getSourceAsString(); Map<String, Object> sourceAsMap = hit.getSourceAsMap(); String documentTitle = (String) sourceAsMap.get("title"); List<Object> users = (List<Object>) sourceAsMap.get("user"); Map<String, Object> innerObject = (Map<String, Object>) sourceAsMap.get("innerObject");
聚合數據能夠經過SearchResponse返回對象,取到它的根節點,而後再根據名稱取到聚合數據。
GET /bank/_search?pretty
{
"size": 0, "aggs": { "group_by_state": { "terms": { "field": "state.keyword" } } } }
響應:
{
"took": 2, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": 999, "max_score": 0, "hits": [] }, "aggregations": { "group_by_state": { "doc_count_error_upper_bound": 20, "sum_other_doc_count": 770, "buckets": [ { "key": "ID", "doc_count": 27 }, { "key": "TX", "doc_count": 27 }, { "key": "AL", "doc_count": 25 }, { "key": "MD", "doc_count": 25 }, { "key": "TN", "doc_count": 23 }, { "key": "MA", "doc_count": 21 }, { "key": "NC", "doc_count": 21 }, { "key": "ND", "doc_count": 21 }, { "key": "MO", "doc_count": 20 }, { "key": "AK", "doc_count": 19 } ] } } }
Java實現:
@Test public void test2(){ RestClient lowLevelRestClient = RestClient.builder( new HttpHost("172.16.73.50", 9200, "http")).build(); RestHighLevelClient client = new RestHighLevelClient(lowLevelRestClient); SearchRequest searchRequest = new SearchRequest("bank"); searchRequest.types("account"); TermsAggregationBuilder aggregation = AggregationBuilders.terms("group_by_state") .field("state.keyword"); SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.aggregation(aggregation); searchSourceBuilder.size(0); searchRequest.source(searchSourceBuilder); try { SearchResponse searchResponse = client.search(searchRequest); Aggregations aggs = searchResponse.getAggregations(); Terms byStateAggs = aggs.get("group_by_state"); Terms.Bucket b = byStateAggs.getBucketByKey("ID"); //只取key是ID的bucket System.out.println(b.getKeyAsString()+","+b.getDocCount()); System.out.println("!!!"); List<? extends Bucket> aggList = byStateAggs.getBuckets();//獲取bucket數組裏全部數據 for (Bucket bucket : aggList) { System.out.println("key:"+bucket.getKeyAsString()+",docCount:"+bucket.getDocCount());; } } catch (IOException e) { e.printStackTrace(); } }
search scroll API是用於處理search request裏面的大量數據的。
爲了使用scroll,按照下面給出的步驟執行:
帶有scroll參數的search請求必須被執行,來初始化scroll session。ES能檢測到scroll參數的存在,保證搜索上下文在相應的時間間隔裏存活
SearchRequest searchRequest = new SearchRequest("account"); //從 account 索引中查詢 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); searchSourceBuilder.query(matchQuery("first", "Virginia")); //match條件 searchSourceBuilder.size(size); //一次取回多少數據 searchRequest.source(searchSourceBuilder); searchRequest.scroll(TimeValue.timeValueMinutes(1L));//設置scroll間隔 SearchResponse searchResponse = client.search(searchRequest); String scrollId = searchResponse.getScrollId(); //取回這條響應的scroll id,在後續的scroll調用中會用到 SearchHit[] hits = searchResponse.getHits().getHits();//獲得文檔數組
第二步,獲得的scroll id 和新的scroll間隔要設置到 SearchScrollRequest裏,再調用searchScroll方法。
ES會返回一批帶有新scroll id的查詢結果。以此類推,新的scroll id能夠用於子查詢,來獲得另外一批新數據。這個過程應該在一個循環內,直到沒有數據返回爲止,這意味着scroll消耗殆盡,全部匹配上的數據都已經取回。
SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId); //傳入scroll id並設置間隔。 scrollRequest.scroll(TimeValue.timeValueSeconds(30)); SearchResponse searchScrollResponse = client.searchScroll(scrollRequest);//執行scroll搜索 scrollId = searchScrollResponse.getScrollId(); //獲得本次scroll id hits = searchScrollResponse.getHits();
使用Clear scroll API來檢測到最後一個scroll id 來釋放scroll上下文.雖然在scroll過時時,這個清理行爲會最終自動觸發,可是最好的實踐是當scroll session結束時,立刻釋放它。
scrollRequest.scroll(TimeValue.timeValueSeconds(60L)); //設置60S的scroll存活時間 scrollRequest.scroll("60s"); //字符串參數
若是在scrollRequest不設置的話,會以searchRequest.scroll()設置的爲準。
SearchResponse searchResponse = client.searchScroll(scrollRequest);
client.searchScrollAsync(scrollRequest, new ActionListener<SearchResponse>() { @Override public void onResponse(SearchResponse searchResponse) { } @Override public void onFailure(Exception e) { } });
@Test public void test3(){ RestClient lowLevelRestClient = RestClient.builder( new HttpHost("172.16.73.50", 9200, "http")).build(); RestHighLevelClient client = new RestHighLevelClient(lowLevelRestClient); SearchRequest searchRequest = new SearchRequest("bank"); SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); MatchAllQueryBuilder mqb = QueryBuilders.matchAllQuery(); searchSourceBuilder.query(mqb); searchSourceBuilder.size(10); searchRequest.source(searchSourceBuilder); searchRequest.scroll(TimeValue.timeValueMinutes(1L)); try { SearchResponse searchResponse = client.search(searchRequest); String scrollId = searchResponse.getScrollId(); SearchHit[] hits = searchResponse.getHits().getHits(); System.out.println("first scroll:"); for (SearchHit searchHit : hits) { System.out.println(searchHit.getSourceAsString()); } Scroll scroll = new Scroll(TimeValue.timeValueMinutes(1L)); System.out.println("loop scroll:"); while(hits != null && hits.length>0){ SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId); scrollRequest.scroll(scroll); searchResponse = client.searchScroll(scrollRequest); scrollId = searchResponse.getScrollId(); hits = searchResponse.getHits().getHits(); for (SearchHit searchHit : hits) { System.out.println(searchHit.getSourceAsString()); } } ClearScrollRequest clearScrollRequest = new ClearScrollRequest(); clearScrollRequest.addScrollId(scrollId); ClearScrollResponse clearScrollResponse = client.clearScroll(clearScrollRequest); boolean succeeded = clearScrollResponse.isSucceeded(); System.out.println("cleared:"+succeeded); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } }
Info API 提供一些關於集羣、節點相關的信息查詢。
MainResponse response = client.info();
ClusterName clusterName = response.getClusterName();
String clusterUuid = response.getClusterUuid(); String nodeName = response.getNodeName(); Version version = response.getVersion(); Build build = response.getBuild();
@Test public void test4(){ RestClient lowLevelRestClient = RestClient.builder( new HttpHost("172.16.73.50", 9200, "http")).build(); RestHighLevelClient client = new RestHighLevelClient(lowLevelRestClient); try { MainResponse response = client.info(); ClusterName clusterName = response.getClusterName(); String clusterUuid = response.getClusterUuid(); String nodeName = response.getNodeName(); Version version = response.getVersion(); Build build = response.getBuild(); System.out.println("cluster name:"+clusterName); System.out.println("cluster uuid:"+clusterUuid); System.out.println("node name:"+nodeName); System.out.println("node version:"+version); System.out.println("node name:"+nodeName); System.out.println("build info:"+build); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } }
關於Elasticsearch 的 Java High Level REST Client API的基本用法大概就是這些,一些進階技巧、概念要隨時查閱官方文檔。