TensorFlow高級API(tf.contrib.learn)及可視化工具TensorBoard的使用

一.TensorFlow高層次機器學習API (tf.contrib.learn)react

1.tf.contrib.learn.datasets.base.load_csv_with_header 加載csv格式數據git

2.tf.contrib.learn.DNNClassifier 創建DNN模型(classifier)express

3.classifer.fit 訓練模型apache

4.classifier.evaluate 評價模型app

5.classifier.predict 預測新樣本less

完整代碼:機器學習

 1 from __future__ import absolute_import
 2 from __future__ import division
 3 from __future__ import print_function
 4 
 5 import tensorflow as tf
 6 import numpy as np
 7 
 8 # Data sets
 9 IRIS_TRAINING = "iris_training.csv"
10 IRIS_TEST = "iris_test.csv"
11 
12 # Load datasets.
13 training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
14     filename=IRIS_TRAINING,
15     target_dtype=np.int,
16     features_dtype=np.float32)
17 test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
18     filename=IRIS_TEST,
19     target_dtype=np.int,
20     features_dtype=np.float32)
21 
22 # Specify that all features have real-value data
23 feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]
24 
25 # Build 3 layer DNN with 10, 20, 10 units respectively.
26 classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
27                                             hidden_units=[10, 20, 10],
28                                             n_classes=3,
29                                             model_dir="/tmp/iris_model")
30 
31 # Fit model.
32 classifier.fit(x=training_set.data,
33                y=training_set.target,
34                steps=2000)
35 
36 # Evaluate accuracy.
37 accuracy_score = classifier.evaluate(x=test_set.data,
38                                      y=test_set.target)["accuracy"]
39 print('Accuracy: {0:f}'.format(accuracy_score))
40 
41 # Classify two new flower samples.
42 new_samples = np.array(
43     [[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=float)
44 y = list(classifier.predict(new_samples, as_iterable=True))
45 print('Predictions: {}'.format(str(y)))

 結果:ide

Accuracy:0.966667函數

 

二.在tf.contrib.learn中建立input函數(輸入預處理函數)學習

格式:

def my_input_fn():

  # Preprocess your data here...

  # ...then return 1) a mapping of feature columns to Tensors with
  # the corresponding feature data, and 2) a Tensor containing labels
  return feature_cols, labels

完整代碼:

 1 #  Copyright 2016 The TensorFlow Authors. All Rights Reserved.
 2 #
 3 #  Licensed under the Apache License, Version 2.0 (the "License");
 4 #  you may not use this file except in compliance with the License.
 5 #  You may obtain a copy of the License at
 6 #
 7 #   http://www.apache.org/licenses/LICENSE-2.0
 8 #
 9 #  Unless required by applicable law or agreed to in writing, software
10 #  distributed under the License is distributed on an "AS IS" BASIS,
11 #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 #  See the License for the specific language governing permissions and
13 #  limitations under the License.
14 """DNNRegressor with custom input_fn for Housing dataset."""
15 
16 from __future__ import absolute_import
17 from __future__ import division
18 from __future__ import print_function
19 
20 import itertools
21 
22 import pandas as pd
23 import tensorflow as tf
24 
25 tf.logging.set_verbosity(tf.logging.INFO)
26 
27 COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age",
28            "dis", "tax", "ptratio", "medv"]
29 FEATURES = ["crim", "zn", "indus", "nox", "rm",
30             "age", "dis", "tax", "ptratio"]
31 LABEL = "medv"
32 
33 
34 def input_fn(data_set):
35   feature_cols = {k: tf.constant(data_set[k].values) for k in FEATURES}
36   labels = tf.constant(data_set[LABEL].values)
37   return feature_cols, labels
38 
39 
40 def main(unused_argv):
41   # Load datasets
42   training_set = pd.read_csv("boston_train.csv", skipinitialspace=True,
43                              skiprows=1, names=COLUMNS)
44   test_set = pd.read_csv("boston_test.csv", skipinitialspace=True,
45                          skiprows=1, names=COLUMNS)
46 
47   # Set of 6 examples for which to predict median house values
48   prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True,
49                                skiprows=1, names=COLUMNS)
50 
51   # Feature cols
52   feature_cols = [tf.contrib.layers.real_valued_column(k)
53                   for k in FEATURES]
54 
55   # Build 2 layer fully connected DNN with 10, 10 units respectively.
56   regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols,
57                                             hidden_units=[10, 10],
58                                             model_dir="/tmp/boston_model")
59 
60   # Fit
61   regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000)
62 
63   # Score accuracy
64   ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1)
65   loss_score = ev["loss"]
66   print("Loss: {0:f}".format(loss_score))
67 
68   # Print out predictions
69   y = regressor.predict(input_fn=lambda: input_fn(prediction_set))
70   # .predict() returns an iterator; convert to a list and print predictions
71   predictions = list(itertools.islice(y, 6))
72   print("Predictions: {}".format(str(predictions)))
73 
74 if __name__ == "__main__":
75   tf.app.run()
inputfunc_contrib_learn.py

 

三.TensorFlow可視化(TensorBoard)

代碼:

  1 # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
  2 #
  3 # Licensed under the Apache License, Version 2.0 (the 'License');
  4 # you may not use this file except in compliance with the License.
  5 # You may obtain a copy of the License at
  6 #
  7 #     http://www.apache.org/licenses/LICENSE-2.0
  8 #
  9 # Unless required by applicable law or agreed to in writing, software
 10 # distributed under the License is distributed on an 'AS IS' BASIS,
 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 12 # See the License for the specific language governing permissions and
 13 # limitations under the License.
 14 # ==============================================================================
 15 """A simple MNIST classifier which displays summaries in TensorBoard.
 16  This is an unimpressive MNIST model, but it is a good example of using
 17 tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of
 18 naming summary tags so that they are grouped meaningfully in TensorBoard.
 19 It demonstrates the functionality of every TensorBoard dashboard.
 20 """
 21 from __future__ import absolute_import
 22 from __future__ import division
 23 from __future__ import print_function
 24 
 25 import argparse
 26 import sys
 27 
 28 import tensorflow as tf
 29 
 30 from tensorflow.examples.tutorials.mnist import input_data
 31 
 32 FLAGS = None
 33 
 34 
 35 def train():
 36   # Import data
 37   mnist = input_data.read_data_sets(FLAGS.data_dir,
 38                                     one_hot=True,
 39                                     fake_data=FLAGS.fake_data)
 40 
 41   sess = tf.InteractiveSession()
 42   # Create a multilayer model.
 43 
 44   # Input placeholders
 45   with tf.name_scope('input'):
 46     x = tf.placeholder(tf.float32, [None, 784], name='x-input')
 47     y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
 48 
 49   with tf.name_scope('input_reshape'):
 50     image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
 51     tf.summary.image('input', image_shaped_input, 10)
 52 
 53   # We can't initialize these variables to 0 - the network will get stuck.
 54   def weight_variable(shape):
 55     """Create a weight variable with appropriate initialization."""
 56     initial = tf.truncated_normal(shape, stddev=0.1)
 57     return tf.Variable(initial)
 58 
 59   def bias_variable(shape):
 60     """Create a bias variable with appropriate initialization."""
 61     initial = tf.constant(0.1, shape=shape)
 62     return tf.Variable(initial)
 63 
 64   def variable_summaries(var):
 65     """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
 66     with tf.name_scope('summaries'):
 67       mean = tf.reduce_mean(var)
 68       tf.summary.scalar('mean', mean)
 69       with tf.name_scope('stddev'):
 70         stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
 71       tf.summary.scalar('stddev', stddev)
 72       tf.summary.scalar('max', tf.reduce_max(var))
 73       tf.summary.scalar('min', tf.reduce_min(var))
 74       tf.summary.histogram('histogram', var)
 75 
 76   def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
 77     """Reusable code for making a simple neural net layer.
 78     It does a matrix multiply, bias add, and then uses relu to nonlinearize.
 79     It also sets up name scoping so that the resultant graph is easy to read,
 80     and adds a number of summary ops.
 81     """
 82     # Adding a name scope ensures logical grouping of the layers in the graph.
 83     with tf.name_scope(layer_name):
 84       # This Variable will hold the state of the weights for the layer
 85       with tf.name_scope('weights'):
 86         weights = weight_variable([input_dim, output_dim])
 87         variable_summaries(weights)
 88       with tf.name_scope('biases'):
 89         biases = bias_variable([output_dim])
 90         variable_summaries(biases)
 91       with tf.name_scope('Wx_plus_b'):
 92         preactivate = tf.matmul(input_tensor, weights) + biases
 93         tf.summary.histogram('pre_activations', preactivate)
 94       activations = act(preactivate, name='activation')
 95       tf.summary.histogram('activations', activations)
 96       return activations
 97 
 98   hidden1 = nn_layer(x, 784, 500, 'layer1')
 99 
100   with tf.name_scope('dropout'):
101     keep_prob = tf.placeholder(tf.float32)
102     tf.summary.scalar('dropout_keep_probability', keep_prob)
103     dropped = tf.nn.dropout(hidden1, keep_prob)
104 
105   # Do not apply softmax activation yet, see below.
106   y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
107 
108   with tf.name_scope('cross_entropy'):
109     # The raw formulation of cross-entropy,
110     #
111     # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)),
112     #                               reduction_indices=[1]))
113     #
114     # can be numerically unstable.
115     #
116     # So here we use tf.nn.softmax_cross_entropy_with_logits on the
117     # raw outputs of the nn_layer above, and then average across
118     # the batch.
119     diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
120     with tf.name_scope('total'):
121       cross_entropy = tf.reduce_mean(diff)
122   tf.summary.scalar('cross_entropy', cross_entropy)
123 
124   with tf.name_scope('train'):
125     train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
126         cross_entropy)
127 
128   with tf.name_scope('accuracy'):
129     with tf.name_scope('correct_prediction'):
130       correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
131     with tf.name_scope('accuracy'):
132       accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
133   tf.summary.scalar('accuracy', accuracy)
134 
135   # Merge all the summaries and write them out to /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
136   merged = tf.summary.merge_all()
137   train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
138   test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
139   tf.global_variables_initializer().run()
140 
141   # Train the model, and also write summaries.
142   # Every 10th step, measure test-set accuracy, and write test summaries
143   # All other steps, run train_step on training data, & add training summaries
144 
145   def feed_dict(train):
146     """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
147     if train or FLAGS.fake_data:
148       xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
149       k = FLAGS.dropout
150     else:
151       xs, ys = mnist.test.images, mnist.test.labels
152       k = 1.0
153     return {x: xs, y_: ys, keep_prob: k}
154 
155   for i in range(FLAGS.max_steps):
156     if i % 10 == 0:  # Record summaries and test-set accuracy
157       summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
158       test_writer.add_summary(summary, i)
159       print('Accuracy at step %s: %s' % (i, acc))
160     else:  # Record train set summaries, and train
161       if i % 100 == 99:  # Record execution stats
162         run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
163         run_metadata = tf.RunMetadata()
164         summary, _ = sess.run([merged, train_step],
165                               feed_dict=feed_dict(True),
166                               options=run_options,
167                               run_metadata=run_metadata)
168         train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
169         train_writer.add_summary(summary, i)
170         print('Adding run metadata for', i)
171       else:  # Record a summary
172         summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
173         train_writer.add_summary(summary, i)
174   train_writer.close()
175   test_writer.close()
176 
177 
178 def main(_):
179   if tf.gfile.Exists(FLAGS.log_dir):
180     tf.gfile.DeleteRecursively(FLAGS.log_dir)
181   tf.gfile.MakeDirs(FLAGS.log_dir)
182   train()
183 
184 
185 if __name__ == '__main__':
186   parser = argparse.ArgumentParser()
187   parser.add_argument('--fake_data', nargs='?', const=True, type=bool,
188                       default=False,
189                       help='If true, uses fake data for unit testing.')
190   parser.add_argument('--max_steps', type=int, default=1000,
191                       help='Number of steps to run trainer.')
192   parser.add_argument('--learning_rate', type=float, default=0.001,
193                       help='Initial learning rate')
194   parser.add_argument('--dropout', type=float, default=0.9,
195                       help='Keep probability for training dropout.')
196   parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data',
197                       help='Directory for storing input data')
198   parser.add_argument('--log_dir', type=str, default='/tmp/tensorflow/mnist/logs/mnist_with_summaries',
199                       help='Summaries log directory')
200   FLAGS, unparsed = parser.parse_known_args()
201   tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
mnist_with_summary.py

啓動TensorBoard: tensorboard --logdir=path/to/log-directory

 

小結:

1.重點爲高層API tf.contrib.learn的使用;

2.初步瞭解使用tensorboard的方法;

3.網址:google/tensorflow遊樂場

 

參考文獻:谷歌官方文檔

相關文章
相關標籤/搜索