AI - TensorFlow - 可視化工具TensorBoard

TensorBoard

TensorFlow自帶的可視化工具,可以以直觀的流程圖的方式,清楚展現出整個神經網絡的結構和框架,便於理解模型和發現問題。python

啓動TensorBoard瀏覽器

  • 使用命令「tensorboard --logdir=path/to/log-directory」(或者「python -m tensorboard.main」);
  • 參數logdir指向FileWriter將數據序列化的目錄,建議在logdir上一級目錄執行此命令;
  • TensorBoard運行後,在瀏覽器輸入「localhost:6006」便可查看TensorBoard;

幫助信息網絡

  • 使用「tensorboard --help」查看tensorboard的詳細參數 

示例

程序代碼框架

 1 # coding=utf-8
 2 from __future__ import print_function  3 import tensorflow as tf  4 import numpy as np  5 import matplotlib.pyplot as plt  6 import os  7 
 8 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
 9 
10 
11 # ### 添加神經層
12 
13 
14 def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):  # 參數n_layer用來標識層數
15     layer_name = 'layer{}'.format(n_layer) 16     with tf.name_scope(layer_name):  # 使用with tf.name_scope定義圖層,並指定在可視化圖層中的顯示名稱
17         with tf.name_scope('weights'):  # 定義圖層並指定名稱,注意這裏是上一圖層的子圖層
18             Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')  # 參數name指定名稱
19             tf.summary.histogram(layer_name + '/weights', Weights)  # 生成直方圖summary,指定圖表名稱和記錄的變量
20         with tf.name_scope('biases'):  # 定義圖層並指定名稱
21             biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')  # 參數name指定名稱
22             tf.summary.histogram(layer_name + '/biases', biases)  # 生成直方圖summary
23         with tf.name_scope('Wx_plus_b'):  # 定義圖層並指定名稱
24             Wx_plus_b = tf.matmul(inputs, Weights) + biases 25         if activation_function is None: 26             outputs = Wx_plus_b 27         else: 28             outputs = activation_function(Wx_plus_b) 29         tf.summary.histogram(layer_name + '/outputs', outputs)  # 生成直方圖summary
30         return outputs 31 
32 
33 # ### 構建數據
34 x_data = np.linspace(-1, 1, 300, dtype=np.float32)[:, np.newaxis] 35 noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32) 36 y_data = np.square(x_data) - 0.5 + noise 37 
38 # ### 搭建網絡
39 with tf.name_scope('inputs'):  # 定義圖層並指定名稱
40     xs = tf.placeholder(tf.float32, [None, 1], name='x_input')  # 指定名稱爲x_input,也就是在可視化圖層中的顯示名稱
41     ys = tf.placeholder(tf.float32, [None, 1], name='y_input')  # 指定名稱爲y_input
42 
43 h1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)  # 隱藏層
44 prediction = add_layer(h1, 10, 1, n_layer=2, activation_function=None)  # 輸出層
45 
46 with tf.name_scope('loss'):  # 定義圖層並指定名稱
47     loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), 48                                         reduction_indices=[1])) 49     tf.summary.scalar('loss', loss)  # 用於標量的summary,loss在TensorBoard的event欄
50 
51 with tf.name_scope('train'):  # 定義圖層並指定名稱
52     train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) 53 
54 sess = tf.Session() 55 merged = tf.summary.merge_all()  # 合併以前定義的全部summary操做
56 writer = tf.summary.FileWriter("logs/", sess.graph)  # 建立FileWriter對象和event文件,指定event文件的存放目錄
57 init = tf.global_variables_initializer() 58 sess.run(init) 59 
60 # ### 結果可視化
61 fig = plt.figure() 62 ax = fig.add_subplot(1, 1, 1) 63 ax.scatter(x_data, y_data) 64 plt.ion() 65 plt.show() 66 
67 # ### 訓練
68 for i in range(1001): 69     sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) 70     if i % 50 == 0: 71         result = sess.run(loss, feed_dict={xs: x_data, ys: y_data}) 72         print("Steps:{} Loss:{}".format(i, result)) 73         rs = sess.run(merged, feed_dict={xs: x_data, ys: y_data})  # 在sess.run中運行
74  writer.add_summary(rs, i) 75         try: 76  ax.lines.remove(lines[0]) 77         except Exception: 78             pass
79         prediction_value = sess.run(prediction, feed_dict={xs: x_data}) 80         lines = ax.plot(x_data, prediction_value, 'r-', lw=5) 81         plt.pause(0.2) 82 
83 # ### TensorBoard
84 # TensorFlow自帶的可視化工具,可以以直觀的流程圖的方式,清楚展現出整個神經網絡的結構和框架,便於理解模型和發現問題;
85 # - 可視化學習:https://www.tensorflow.org/guide/summaries_and_tensorboard
86 # - 圖的直觀展現:https://www.tensorflow.org/guide/graph_viz;
87 # - 直方圖信息中心:https://www.tensorflow.org/guide/tensorboard_histograms
88 # 89 # ### 啓動TensorBoard
90 # 使用命令「tensorboard --logdir=path/to/log-directory」(或者「python -m tensorboard.main」);
91 # 參數logdir指向FileWriter將數據序列化的目錄,建議在logdir上一級目錄執行此命令;
92 # TensorBoard運行後,在瀏覽器輸入「localhost:6006」便可查看TensorBoard;

 

程序運行結果

運行過程當中顯示的圖形:dom

 

某一次運行的命令行輸出:ide

Steps:0 Loss:0.19870562851428986 Steps:50 Loss:0.006314810831099749 Steps:100 Loss:0.0050856382586061954 Steps:150 Loss:0.0048223137855529785 Steps:200 Loss:0.004617161583155394 Steps:250 Loss:0.004429362714290619 Steps:300 Loss:0.004260621033608913 Steps:350 Loss:0.004093690309673548 Steps:400 Loss:0.003932977095246315 Steps:450 Loss:0.0038178395479917526 Steps:500 Loss:0.003722294932231307 Steps:550 Loss:0.003660505171865225 Steps:600 Loss:0.0036110866349190474 Steps:650 Loss:0.0035716891288757324 Steps:700 Loss:0.0035362064372748137 Steps:750 Loss:0.0034975067246705294 Steps:800 Loss:0.003465239657089114 Steps:850 Loss:0.003431882942095399 Steps:900 Loss:0.00339301535859704 Steps:950 Loss:0.0033665322698652744 Steps:1000 Loss:0.003349516075104475

 

生成的TensorBoard文件:工具

(mlcc) D:\Anliven\Anliven-Code\PycharmProjects\TempTest>dir logs 驅動器 D 中的卷是 Files 卷的序列號是 ACF9-2E0E D:\Anliven\Anliven-Code\PycharmProjects\TempTest\logs 的目錄 2019/02/24 23:41 <DIR> . 2019/02/24 23:41 <DIR> .. 2019/02/24 23:41 137,221 events.out.tfevents.1551022894.DESKTOP-68OFQFP 1 個文件 137,221 字節 2 個目錄 219,401,887,744 可用字節 (mlcc) D:\Anliven\Anliven-Code\PycharmProjects\TempTest>

 

啓動與TensorBoard

執行下面的啓動命令,而後在瀏覽器中輸入「http://localhost:6006/」查看。學習

(mlcc) D:\Anliven\Anliven-Code\PycharmProjects\TempTest>tensorboard --logdir=logs TensorBoard 1.12.0 at http://DESKTOP-68OFQFP:6006 (Press CTRL+C to quit)

 

欄目Scalars

 

欄目Graphs

  • 經過鼠標滑輪能夠改變顯示大小和位置 
  • 鼠標雙擊「+」標識能夠查看進一步的信息
  • 能夠將指定圖層從主圖層移出,單獨顯示

 

欄目Distributions

 

欄目histograms

相關文章
相關標籤/搜索