Given an input string (s
) and a pattern (p
), implement regular expression matching with support for '.'
and '*'
.html
'.' Matches any single character. '*' Matches zero or more of the preceding element.
The matching should cover the entire input string (not partial).正則表達式
Note:express
s
could be empty and contains only lowercase letters a-z
.p
could be empty and contains only lowercase letters a-z
, and characters like .
or *
.Example 1:ui
Input: s = "aa" p = "a" Output: false Explanation: "a" does not match the entire string "aa".Example 2:spa
Input: s = "aa" p = "*" Output: true Explanation: '*' matches any sequence.Example 3:code
Input: s = "cb" p = "?a" Output: false Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.Example 4:htm
Input: s = "adceb" p = "*a*b" Output: true Explanation: The first '*' matches the empty sequence, while the second '*' matches the substring "dce".Example 5:blog
Input: s = "acdcb" p = "a*c?b" Output: false
正則表達式匹配。題意是給一個字符串S和一個字符規律P,請你完成S和P的正則匹配。規則以下,點能夠表示/替換任何字符;星號能夠代替0個或多個以前的字符。element
這個題是一個二維DP題。這個題DP的含義不難想,難的是如何處理好各類case。這裏咱們須要明確dp[i][j]的含義,是S的前i個字符與P的前J個字符是否match。爲了看S的前i個字符與P的前J個字符是否match,比較直觀的想法就是去看他們各自以前一個位置的DP狀況,即dp[i - 1][j - 1],可是對於當前位置,會有以下幾種狀況須要考慮。參考了LC中文網一個大神的總結。leetcode
1. 若是 p[j] == s[i],那麼dp[i][j] = dp[i-1][j-1]
2. 若是p[j] != s[i],即當前遍歷到的字符不匹配
2.1. p[j] == "." : dp[i][j] = dp[i-1][j-1],由於點能夠替換任何字符,只要去看以前那一位的字符是否匹配便可。這個case等同於第一個case。
2.2. p[j] ==" * ",這個又須要細分紅如下兩種狀況。由於星號能夠代替0個或多個在他以前的那個字符,因此須要看p[j - 1]和s[i]的狀況
2.2.1. p[j-1] != s[i] : dp[i][j] = dp[i][j-2]
這裏設想的是星號去掉了他本身和他本身以前的那個字符,好比這個例子,s = ab, p = abc*
2.2.2. p[j-1] == s[i] or p[j-1] == "."。星號前面那個字符,能匹配 s[i],或者星號前面那個字符是萬能的點。由於星號+點就等同於兩個點,只要看再前面的部分是否匹配便可。好比s == aa, p = a*
時間O(mn)
空間O(mn)
Java實現
1 class Solution { 2 public boolean isMatch(String s, String p) { 3 // corner case 4 int m = s.length(); 5 int n = p.length(); 6 boolean[][] dp = new boolean[m + 1][n + 1]; 7 dp[0][0] = true; 8 9 // 星號匹配前面0個字符 10 for (int i = 2; i <= n; i++) { 11 if (p.charAt(i - 1) == '*') { 12 dp[0][i] = dp[0][i - 2]; 13 } 14 } 15 16 for (int i = 1; i <= m; i++) { 17 for (int j = 1; j <= n; j++) { 18 char sc = s.charAt(i - 1); 19 char pc = p.charAt(j - 1); 20 if (sc == pc || pc == '.') { 21 dp[i][j] = dp[i - 1][j - 1]; 22 } else if (pc == '*') { 23 // * matches zero preceding letters 24 if (dp[i][j - 2]) { 25 dp[i][j] = true; 26 } 27 // * matches one preceding letter 28 // aa - a* 29 else if (sc == p.charAt(j - 2) || p.charAt(j - 2) == '.') { 30 dp[i][j] = dp[i - 1][j]; 31 } 32 } 33 } 34 } 35 return dp[m][n]; 36 } 37 }