JavaShuo
欄目
標籤
dual learning for machine translation
時間 2020-12-24
原文
原文鏈接
對於翻譯系統,如語言A翻譯到語言B,通常需要大量的語言對來訓練神經機器翻譯,而數據量的增大會大大的增加成本。本文通過構建兩個神經翻譯網絡,θAB和θBA,這兩個網絡分別用於將語言A翻譯到語言B和語言B翻譯到語言A。文章先採用少量的語言對訓練好這兩個模型。之後,採用無監督學習,訓練這兩個模型,具體爲將語言A輸入網絡θAB,同時將θAB的輸出輸入到網絡θBA中,再採用強化學習的思想,對網絡θAB和網絡
>>阅读原文<<
相關文章
1.
論文閱讀——Dual Learning for Machine Translation
2.
論文閱讀:Dual Learning for Machine Translation
3.
Machine Learning Techniques -2-Dual Support Vector Machine
4.
Neural Machine Translation by Jointly Learning to Align and....
5.
Coursera Machine Learning Week 6 - Advice for Applying Machine Learning
6.
Neural Machine Translation by Jointly Learning to Align and Translate
7.
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation
8.
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation之每日一篇
9.
翻譯:Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation
10.
Netural Machine Translation By Joinly Learning To Align And Translate
更多相關文章...
•
Docker Machine
-
Docker教程
•
Swift for 循環
-
Swift 教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
machine
translation
dual
learning
Deep Learning
Meta-learning
Learning Perl
for...of
69.for
for..loop
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
JDK JRE JVM,JDK卸載與安裝
2.
Unity NavMeshComponents 學習小結
3.
Unity技術分享連載(64)|Shader Variant Collection|Material.SetPassFast
4.
爲什麼那麼多人用「ji32k7au4a83」作密碼?
5.
關於Vigenere爆0總結
6.
圖論算法之最小生成樹(Krim、Kruskal)
7.
最小生成樹 簡單入門
8.
POJ 3165 Traveling Trio 筆記
9.
你的快遞最遠去到哪裏呢
10.
雲徙探險中臺賽道:借道雲原生,尋找「最優路線」
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文閱讀——Dual Learning for Machine Translation
2.
論文閱讀:Dual Learning for Machine Translation
3.
Machine Learning Techniques -2-Dual Support Vector Machine
4.
Neural Machine Translation by Jointly Learning to Align and....
5.
Coursera Machine Learning Week 6 - Advice for Applying Machine Learning
6.
Neural Machine Translation by Jointly Learning to Align and Translate
7.
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation
8.
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation之每日一篇
9.
翻譯:Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation
10.
Netural Machine Translation By Joinly Learning To Align And Translate
>>更多相關文章<<