關於LSTM的輸入和訓練過程的理解

1.訓練的話通常一批一批訓練,即讓batch_size 個樣本同時訓練;git

2.每一個樣本又包含從該樣本日後的連續seq_len個樣本(如seq_len=15),seq_len也就是LSTM中cell的個數;網絡

3.每一個樣本又包含inpute_dim個維度的特徵(如input_dim=7)dom

所以,輸入層的輸入數據一般先要reshape:學習

x= np.reshape(x, (batch_size , seq_len, input_dim))測試

(友情提示:每一個cell共享參數!!!)

優化

舉個例子:ui

from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import numpy as np #在這裏作數據加載,仍是使用那個MNIST的數據,以one_hot的方式加載數據,記得目錄能夠改爲以前已經下載完成的目錄
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) ''' MNIST的數據是一個28*28的圖像,這裏RNN測試,把他當作一行行的序列(28維度(28長的sequence)*28行) '''

# RNN學習時使用的參數
learning_rate = 0.001 training_iters = 100000 batch_size = 128 display_step = 10

# 神經網絡的參數
n_input = 28  # 輸入層的n
n_steps = 28  # 28長度
n_hidden = 128  # 隱含層的特徵數
n_classes = 10  # 輸出的數量,由於是分類問題,0~9個數字,這裏一共有10個

# 構建tensorflow的輸入X的placeholder
x = tf.placeholder("float", [None, n_steps, n_input]) # tensorflow裏的LSTM須要兩倍於n_hidden的長度的狀態,一個state和一個cell # Tensorflow LSTM cell requires 2x n_hidden length (state & cell)
istate = tf.placeholder("float", [None, 2 * n_hidden]) # 輸出Y
y = tf.placeholder("float", [None, n_classes]) # 隨機初始化每一層的權值和偏置
weights = { 'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])),  # Hidden layer weights
    'out': tf.Variable(tf.random_normal([n_hidden, n_classes])) } biases = { 'hidden': tf.Variable(tf.random_normal([n_hidden])), 'out': tf.Variable(tf.random_normal([n_classes])) } ''' 構建RNN '''
def RNN(_X, _istate, _weights, _biases): # 規整輸入的數據
    _X = tf.transpose(_X, [1, 0, 2])  # permute n_steps and batch_size
 _X = tf.reshape(_X, [-1, n_input])  # (n_steps*batch_size, n_input)
    # 輸入層到隱含層,第一次是直接運算
    _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden'] # 以後使用LSTM
    lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0) # 28長度的sequence,因此是須要分解位28次
    _X = tf.split(0, n_steps, _X)  # n_steps * (batch_size, n_hidden)
    # 開始跑RNN那部分
    outputs, states = tf.nn.rnn(lstm_cell, _X, initial_state=_istate) # 輸出層
    return tf.matmul(outputs[-1], _weights['out']) + _biases['out'] pred = RNN(x, istate, weights, biases) # 定義損失和優化方法,其中算是爲softmax交叉熵,優化方法爲Adam
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))  # Softmax loss
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)  # Adam Optimizer

# 進行模型的評估,argmax是取出取值最大的那一個的標籤做爲輸出
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 初始化
init = tf.initialize_all_variables() # 開始運行
with tf.Session() as sess: sess.run(init) step = 1
    # 持續迭代
    while step * batch_size < training_iters: # 隨機抽出這一次迭代訓練時用的數據
        batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 對數據進行處理,使得其符合輸入
        batch_xs = batch_xs.reshape((batch_size, n_steps, n_input)) # 迭代
        sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, istate: np.zeros((batch_size, 2 * n_hidden))}) # 在特定的迭代回合進行數據的輸出
        if step % display_step == 0: # Calculate batch accuracy
            acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, istate: np.zeros((batch_size, 2 * n_hidden))}) # Calculate batch loss
            loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, istate: np.zeros((batch_size, 2 * n_hidden))}) print "Iter " + str(step * batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + \ ", Training Accuracy= " + "{:.5f}".format(acc) step += 1
    print "Optimization Finished!"
    # 載入測試集進行測試
    test_len = 256 test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label, istate: np.zeros((test_len, 2 * n_hidden))}
相關文章
相關標籤/搜索