Volley——網絡請求(三)

上一節,介紹了HurlStack的實現,根據咱們外層的代碼:html

/**
     * Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
     *
     * @param context A {@link Context} to use for creating the cache dir.
     * @param stack An {@link HttpStack} to use for the network, or null for default.
     * @return A started {@link RequestQueue} instance.
     */
    public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
        File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);

        String userAgent = "volley/0";
        try {
            String packageName = context.getPackageName();
            PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
            userAgent = packageName + "/" + info.versionCode;
        } catch (NameNotFoundException e) {
        }

        if (stack == null) {
            if (Build.VERSION.SDK_INT >= 9) {
                stack = new HurlStack();
            } else {
                // Prior to Gingerbread, HttpUrlConnection was unreliable.
                // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
                stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
            }
        }

        Network network = new BasicNetwork(stack);

        RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
        queue.start();

        return queue;
    }

   這一節,我將閱讀並記錄BasicNetwork的實現。android

  

    /**
     * @param httpStack HTTP stack to be used
     */
    public BasicNetwork(HttpStack httpStack) {
        // If a pool isn't passed in, then build a small default pool that will give us a lot of
        // benefit and not use too much memory.
        this(httpStack, new ByteArrayPool(DEFAULT_POOL_SIZE));
    }

    /**
     * @param httpStack HTTP stack to be used
     * @param pool a buffer pool that improves GC performance in copy operations
     */
    public BasicNetwork(HttpStack httpStack, ByteArrayPool pool) {
        mHttpStack = httpStack;
        mPool = pool;
    }

 

   先看BasicNetwork的構造方法。咱們在此方法中,傳入了HttpStack,這個上一篇已經分析過了。而後咱們新建了一個ByteArrayPool傳入。咱們能夠閱讀一下ByteArrayPool這個類。數組

public class ByteArrayPool {
    /** The buffer pool, arranged both by last use and by buffer size */
    private List<byte[]> mBuffersByLastUse = new LinkedList<byte[]>();
    private List<byte[]> mBuffersBySize = new ArrayList<byte[]>(64);

    /** The total size of the buffers in the pool */
    private int mCurrentSize = 0;

    /**
     * The maximum aggregate size of the buffers in the pool. Old buffers are discarded to stay
     * under this limit.
     */
    private final int mSizeLimit;

    /** Compares buffers by size */
    protected static final Comparator<byte[]> BUF_COMPARATOR = new Comparator<byte[]>() {
        @Override
        public int compare(byte[] lhs, byte[] rhs) {
            return lhs.length - rhs.length;
        }
    };

    /**
     * @param sizeLimit the maximum size of the pool, in bytes
     */
    public ByteArrayPool(int sizeLimit) {
        mSizeLimit = sizeLimit;
    }

    /**
     * Returns a buffer from the pool if one is available in the requested size, or allocates a new
     * one if a pooled one is not available.
     *
     * @param len the minimum size, in bytes, of the requested buffer. The returned buffer may be
     *        larger.
     * @return a byte[] buffer is always returned.
     */
    public synchronized byte[] getBuf(int len) {
        for (int i = 0; i < mBuffersBySize.size(); i++) {
            byte[] buf = mBuffersBySize.get(i);
            if (buf.length >= len) {
                mCurrentSize -= buf.length;
                mBuffersBySize.remove(i);
                mBuffersByLastUse.remove(buf);
                return buf;
            }
        }
        return new byte[len];
    }

    /**
     * Returns a buffer to the pool, throwing away old buffers if the pool would exceed its allotted
     * size.
     *
     * @param buf the buffer to return to the pool.
     */
    public synchronized void returnBuf(byte[] buf) {
        if (buf == null || buf.length > mSizeLimit) {
            return;
        }
        mBuffersByLastUse.add(buf);
        int pos = Collections.binarySearch(mBuffersBySize, buf, BUF_COMPARATOR);
        if (pos < 0) {
            pos = -pos - 1;
        }
        mBuffersBySize.add(pos, buf);
        mCurrentSize += buf.length;
        trim();
    }

    /**
     * Removes buffers from the pool until it is under its size limit.
     */
    private synchronized void trim() {
        while (mCurrentSize > mSizeLimit) {
            byte[] buf = mBuffersByLastUse.remove(0);
            mBuffersBySize.remove(buf);
            mCurrentSize -= buf.length;
        }
    }

}

 

  總體上來講,它是一個ByteArray的緩衝類,它提供了存、取和清理三個功能。目的是讓ByteArray保持在合適的長度,這個設計理念很是相似LruCache。 接着就是閱讀BasicNetwork中的performRequest方法。爲何是這個方法,在Volley的第一篇分析中,咱們曾閱讀過RequestQueue的源碼,中間有這樣一段:  緩存

        for (int i = 0; i < mDispatchers.length; i++) {
            NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                    mCache, mDelivery);
            mDispatchers[i] = networkDispatcher;
            networkDispatcher.start();
        }

 

   而後在NetworkDispatcher這個Thread的子類中的run方法中,又有這樣一段:app

                // Perform the network request.
                NetworkResponse networkResponse = mNetwork.performRequest(request);
                request.addMarker("network-http-complete");

 

  當時咱們一筆帶過了。BasicNetwork的performRequest方法實現代碼,比較長,咱們只能分段閱讀。socket

    @Override
    public NetworkResponse performRequest(Request<?> request) throws VolleyError {
        long requestStart = SystemClock.elapsedRealtime();
        while (true) {
            HttpResponse httpResponse = null;
            byte[] responseContents = null;
            Map<String, String> responseHeaders = Collections.emptyMap();
            try {
                // Gather headers.
                Map<String, String> headers = new HashMap<String, String>();
                addCacheHeaders(headers, request.getCacheEntry());
                httpResponse = mHttpStack.performRequest(request, headers);

 

  咱們很容易發現,BasicNetwork的performRequest總體是一個無限循環中。咱們來看看循環裏面的內容:ide

  首先建立了HttpResponse、一個存放response內容的byte數組和一個存放response頭的Map。ui

  而後,調用addCacheHeader方法,咱們能夠看一下這個方法的實現,比較簡單。 this

    private void addCacheHeaders(Map<String, String> headers, Cache.Entry entry) {
        // If there's no cache entry, we're done.
        if (entry == null) {
            return;
        }

        if (entry.etag != null) {
            headers.put("If-None-Match", entry.etag);
        }

        if (entry.lastModified > 0) {
            Date refTime = new Date(entry.lastModified);
            headers.put("If-Modified-Since", DateUtils.formatDate(refTime));
        }
    }

  就是將request中緩存的etag和lastModified屬性加入到response的header中。url

  最後就是執行HurlStack中的performRequest方法,這個在第二節中已經詳細記錄過,再也不贅述。

  接着是下面一段: 

                httpResponse = mHttpStack.performRequest(request, headers);
                StatusLine statusLine = httpResponse.getStatusLine();
                int statusCode = statusLine.getStatusCode();

                responseHeaders = convertHeaders(httpResponse.getAllHeaders());

 

  這一段的關鍵方法是converHeaders,咱們來看看它的實現。

    /**
     * Converts Headers[] to Map<String, String>.
     */
    protected static Map<String, String> convertHeaders(Header[] headers) {
        Map<String, String> result = new TreeMap<String, String>(String.CASE_INSENSITIVE_ORDER);
        for (int i = 0; i < headers.length; i++) {
            result.put(headers[i].getName(), headers[i].getValue());
        }
        return result;
    }

  這個方法其實比較簡單,就是將httpResponse中的headers取出來,放入responseHaeader的map中。通過兩上面段代碼,咱們將緩存中的header和HurlStack返回的httpResponse的header作了合併,最終都存入responseHeaders這個Map中。

  

                // Handle cache validation.
                if (statusCode == HttpStatus.SC_NOT_MODIFIED) {

                    Entry entry = request.getCacheEntry();
                    if (entry == null) {
                        return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, null,
                                responseHeaders, true,
                                SystemClock.elapsedRealtime() - requestStart);
                    }

                    // A HTTP 304 response does not have all header fields. We
                    // have to use the header fields from the cache entry plus
                    // the new ones from the response.
                    // http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
                    entry.responseHeaders.putAll(responseHeaders);
                    return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, entry.data,
                            entry.responseHeaders, true,
                            SystemClock.elapsedRealtime() - requestStart);
                }

 

  接下來的一段進行了緩存校驗。若是請求返回的狀態碼是304(即SC_NOT_MODIFIED),表示自上次請求以後,所請求的內容沒有任何改變。這種狀況我就能夠直接在緩存中取數據。 不論緩存是否爲空,咱們都會新建一個NetworkResponse對象返回。區別只在於,若是有緩存,咱們會將剛剛合併好的httpResponse的header加入其中。

 

                // Some responses such as 204s do not have content.  We must check.
                if (httpResponse.getEntity() != null) {
                  responseContents = entityToBytes(httpResponse.getEntity());
                } else {
                  // Add 0 byte response as a way of honestly representing a
                  // no-content request.
                  responseContents = new byte[0];
                }

  校驗完304的狀況後,開始對204進行校驗。便是否返回無內容。若是返回無內容則新建一個空byte數組,若是有內容則須要一個轉化。咱們來看看這個轉化方法entityToBytes:

    /** Reads the contents of HttpEntity into a byte[]. */
    private byte[] entityToBytes(HttpEntity entity) throws IOException, ServerError {
        PoolingByteArrayOutputStream bytes =
                new PoolingByteArrayOutputStream(mPool, (int) entity.getContentLength());
        byte[] buffer = null;
        try {
            InputStream in = entity.getContent();
            if (in == null) {
                throw new ServerError();
            }
            buffer = mPool.getBuf(1024);
            int count;
            while ((count = in.read(buffer)) != -1) {
                bytes.write(buffer, 0, count);
            }
            return bytes.toByteArray();
        } finally {
            try {
                // Close the InputStream and release the resources by "consuming the content".
                entity.consumeContent();
            } catch (IOException e) {
                // This can happen if there was an exception above that left the entity in
                // an invalid state.
                VolleyLog.v("Error occured when calling consumingContent");
            }
            mPool.returnBuf(buffer);
            bytes.close();
        }
    }

   一個比較基礎的數據讀取,運用了以前提到的ByteArrayPool這個類。一次只讀取1024位。值得注意的是,bytes.write進行了重寫。

    @Override
    public synchronized void write(byte[] buffer, int offset, int len) {
        expand(len);
        super.write(buffer, offset, len);
    }

    /**
     * Ensures there is enough space in the buffer for the given number of additional bytes.
     */
    private void expand(int i) {
        /* Can the buffer handle @i more bytes, if not expand it */
        if (count + i <= buf.length) {
            return;
        }
        byte[] newbuf = mPool.getBuf((count + i) * 2);
        System.arraycopy(buf, 0, newbuf, 0, count);
        mPool.returnBuf(buf);
        buf = newbuf;
    }

 

   若是須要讀取的流,長度超過了1024會進行擴展。讀取完成後,會將數據再放回mPool,進行緩存。

  接下來,就是performRequest方法的try塊兒中的最後一段:

                logSlowRequests(requestLifetime, request, responseContents, statusLine);

                if (statusCode < 200 || statusCode > 299) {
                    throw new IOException();
                }
                return new NetworkResponse(statusCode, responseContents, responseHeaders, false,
                        SystemClock.elapsedRealtime() - requestStart);

 

   這一段分爲三步,第一步,檢測慢速請求,第二步,檢測2xx錯誤,第三步,返回NetworkResponse。

  咱們先來看看檢測慢速請求的代碼:

  

    /**
     * Logs requests that took over SLOW_REQUEST_THRESHOLD_MS to complete.
     */
    private void logSlowRequests(long requestLifetime, Request<?> request,
            byte[] responseContents, StatusLine statusLine) {
        if (DEBUG || requestLifetime > SLOW_REQUEST_THRESHOLD_MS) {
            VolleyLog.d("HTTP response for request=<%s> [lifetime=%d], [size=%s], " +
                    "[rc=%d], [retryCount=%s]", request, requestLifetime,
                    responseContents != null ? responseContents.length : "null",
                    statusLine.getStatusCode(), request.getRetryPolicy().getCurrentRetryCount());
        }
    }

 

  這一段代碼,只作了一個簡單的判斷,當請求用時,大於SLOW_REQUEST_THRESHOLD_MS時,即爲慢速請求,報出log。

  至此,performRequest方法的try塊兒,就閱讀完了。下面閱讀catch部分,這裏涉及了一些錯誤處理方法和重發機制。  

            } catch (SocketTimeoutException e) {
                attemptRetryOnException("socket", request, new TimeoutError());
            } catch (ConnectTimeoutException e) {
                attemptRetryOnException("connection", request, new TimeoutError());
            } catch (MalformedURLException e) {
                throw new RuntimeException("Bad URL " + request.getUrl(), e);
            } catch (IOException e) {
                int statusCode = 0;
                NetworkResponse networkResponse = null;
                if (httpResponse != null) {
                    statusCode = httpResponse.getStatusLine().getStatusCode();
                } else {
                    throw new NoConnectionError(e);
                }
                VolleyLog.e("Unexpected response code %d for %s", statusCode, request.getUrl());
                if (responseContents != null) {
                    networkResponse = new NetworkResponse(statusCode, responseContents,
                            responseHeaders, false, SystemClock.elapsedRealtime() - requestStart);
                    if (statusCode == HttpStatus.SC_UNAUTHORIZED ||
                            statusCode == HttpStatus.SC_FORBIDDEN) {
                        attemptRetryOnException("auth",
                                request, new AuthFailureError(networkResponse));
                    } else {
                        // TODO: Only throw ServerError for 5xx status codes.
                        throw new ServerError(networkResponse);
                    }
                } else {
                    throw new NetworkError(networkResponse);
                }
            }

 

  咱們先來看一看attemptRetryOnException方法,在超時的異常中,它首先會被調用。  

    /**
     * Attempts to prepare the request for a retry. If there are no more attempts remaining in the
     * request's retry policy, a timeout exception is thrown.
     * @param request The request to use.
     */
    private static void attemptRetryOnException(String logPrefix, Request<?> request,
            VolleyError exception) throws VolleyError {
        RetryPolicy retryPolicy = request.getRetryPolicy();
        int oldTimeout = request.getTimeoutMs();

        try {
            retryPolicy.retry(exception);
        } catch (VolleyError e) {
            request.addMarker(
                    String.format("%s-timeout-giveup [timeout=%s]", logPrefix, oldTimeout));
            throw e;
        }
        request.addMarker(String.format("%s-retry [timeout=%s]", logPrefix, oldTimeout));
    }

   代碼會取出請求中的重發策略,進行重發。RetryPolicy是個接口,咱們須要在本身實現。RetryPolicy:

/**
 * Retry policy for a request.
 */
public interface RetryPolicy {

    /**
     * Returns the current timeout (used for logging).
     */
    public int getCurrentTimeout();

    /**
     * Returns the current retry count (used for logging).
     */
    public int getCurrentRetryCount();

    /**
     * Prepares for the next retry by applying a backoff to the timeout.
     * @param error The error code of the last attempt.
     * @throws VolleyError In the event that the retry could not be performed (for example if we
     * ran out of attempts), the passed in error is thrown.
     */
    public void retry(VolleyError error) throws VolleyError;
}

 

   RetryPolicy接口包含了三個方法,獲取超時,獲取重發次數和重發。

 

  至此,BasicNetwork的基本實現,概讀了一遍。接下來,會閱讀Volley中的Request。

 

Done~

相關文章
相關標籤/搜索