前言: 本文是對這篇博客MySQL 8.0 Histograms的翻譯,翻譯若有不當的地方,敬請諒解,請尊重原創和翻譯勞動成果,轉載的時候請註明出處。謝謝!html
英文原文地址:https://lefred.be/content/mysql-8-0-histograms/mysql
翻譯原文地址:http://www.javashuo.com/article/p-zngjbfny-m.htmlsql
在MySQL 8.0以前,MySQL缺失了其它關係數據庫中一個衆所周知的功能:優化器的直方圖數據庫
優化器團隊(Optimizer Team)在愈來愈多的MySQL DBA的呼聲中實現了這個功能。json
直方圖定義app
但什麼是直方圖呢?咱們來看維基百科的定義吧,直方圖是數值數據分佈的準確表示。 對於RDBMS來講,直方圖是特定列內數據分佈的近似值。所以在MySQL中,直方圖可以幫助優化器找到最有效的執行計劃。less
直方圖例子優化
爲了說明直方圖是如何影響優化器工做的,我會用dbt3生成的數據來演示。ui
咱們準備了一個簡單查詢:spa
SELECT * FROM orders
JOIN customer ON o_custkey = c_custkey
WHERE o_orderdate < '1993-01-01'
AND c_mktsegment = "AUTOMOBILE"\G
讓咱們看一下傳統的執行計劃的EXPLAIN輸出,以及可視化方式(VISUAL one):
mysql> EXPLAIN SELECT * FROM orders
JOIN customer ON o_custkey = c_custkey
WHERE o_orderdate < '1993-01-01' AND c_mktsegment = "AUTOMOBILE"\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: customer
partitions: NULL
type: ALL
possible_keys: PRIMARY
key: NULL
key_len: NULL
ref: NULL
rows: 149050
filtered: 10.00
Extra: Using where
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: orders
partitions: NULL
type: ref
possible_keys: i_o_custkey,i_o_orderdate
key: i_o_custkey
key_len: 5
ref: dbt3.customer.c_custkey
rows: 14
filtered: 30.62
Extra: Using where
2 rows in set, 1 warning (0.28 sec)
咱們看到MySQL首先對customer表作了一個全表掃描,而且它的選擇估計記錄(過濾)是10%;
接下來讓咱們運行這個查詢(我使用了COUNT(*)),而後咱們來看看有多少行記錄
mysql> SELECT count(*) FROM orders
JOIN customer ON o_custkey = c_custkey
WHERE o_orderdate < '1993-01-01' AND c_mktsegment = "AUTOMOBILE"\G
*************************** 1. row ***************************
count(*): 45127
1 row in set (49.98 sec)
建立直方圖
如今,我將在表customer上的字段c_mktsegment上建立一個直方圖
mysql> ANALYZE TABLE customer UPDATE HISTOGRAM ON c_mktsegment WITH 1024 BUCKETS;
+---------------+-----------+----------+---------------------------------------------------------+
| Table | Op | Msg_type | Msg_text |
+---------------+-----------+----------+---------------------------------------------------------+
| dbt3.customer | histogram | status | Histogram statistics created for column 'c_mktsegment'. |
+---------------+-----------+----------+---------------------------------------------------------+
接下來,咱們來驗證查詢的執行計劃:
mysql> EXPLAIN SELECT * FROM orders
JOIN customer ON o_custkey = c_custkey
WHERE o_orderdate < '1993-01-01' AND c_mktsegment = "AUTOMOBILE"\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: orders
partitions: NULL
type: ALL
possible_keys: i_o_custkey,i_o_orderdate
key: NULL
key_len: NULL
ref: NULL
rows: 1494230
filtered: 30.62
Extra: Using where
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: customer
partitions: NULL
type: eq_ref
possible_keys: PRIMARY
key: PRIMARY
key_len: 4
ref: dbt3.orders.o_custkey
rows: 1
filtered: 19.84
Extra: Using where
2 rows in set, 1 warning (1.06 sec)
如今,使用直方圖後,咱們能夠看到customer表的「吸引力」下降了,由於order表按條件過濾的行的百分比(30.62)幾乎是customer表按條件過濾行的百分比的兩倍(19.84%),這將致使低order表進行查找。
注意:這段感受沒有翻譯恰當,英文原文以下,若是感受翻譯比較生硬,參考原文
Now with the histogram we can see that it becomes less attractive to start with customer table since almost twice as many rows (19.84%) will cause look-ups into the order table.
優化器選擇對order表進行全表掃描(full sacn),此時執行計劃的代價看起來彷佛還高一些,,讓咱們看一下SQL的執行時間:
mysql> SELECT count(*) FROM orders
JOIN customer ON o_custkey = c_custkey
WHERE o_orderdate < '1993-01-01' AND c_mktsegment = "AUTOMOBILE"\G
*************************** 1. row ***************************
count(*): 45127
1 row in set (6.35 sec)
SQL語句的執行時間更短,明顯比以前要快了
查看數據的分佈
直方圖數據存貯在Information_Schema.column_statistics表中,這個表的定義以下
+-------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-------------+------+-----+---------+-------+
| SCHEMA_NAME | varchar(64) | NO | | NULL | |
| TABLE_NAME | varchar(64) | NO | | NULL | |
| COLUMN_NAME | varchar(64) | NO | | NULL | |
| HISTOGRAM | json | NO | | NULL | |
+-------------+-------------+------+-----+---------+-------+
它的一條記錄相似下面這樣:
SELECT SCHEMA_NAME, TABLE_NAME, COLUMN_NAME, JSON_PRETTY(HISTOGRAM)
FROM information_schema.column_statistics
WHERE COLUMN_NAME = 'c_mktsegment'\G
*************************** 1. row ***************************
SCHEMA_NAME: dbt3
TABLE_NAME: customer
COLUMN_NAME: c_mktsegment
JSON_PRETTY(HISTOGRAM): {
"buckets": [
[
"base64:type254:QVVUT01PQklMRQ==",
0.19837010534684954
],
[
"base64:type254:QlVJTERJTkc=",
0.3983104750546611
],
[
"base64:type254:RlVSTklUVVJF",
0.5978433710991851
],
[
"base64:type254:SE9VU0VIT0xE",
0.799801232359372
],
[
"base64:type254:TUFDSElORVJZ",
1.0
]
],
"data-type": "string",
"null-values": 0.0,
"collation-id": 255,
"last-updated": "2018-03-02 20:21:48.271523",
"sampling-rate": 0.6709158000670916,
"histogram-type": "singleton",
"number-of-buckets-specified": 1024
}
並且能夠查看分佈
SELECT FROM_BASE64(SUBSTRING_INDEX(v, ':', -1)) value, concat(round(c*100,1),'%') cumulfreq,
CONCAT(round((c - LAG(c, 1, 0) over()) * 100,1), '%') freq
FROM information_schema.column_statistics, JSON_TABLE(histogram->'$.buckets',
'$[*]' COLUMNS(v VARCHAR(60) PATH '$[0]', c double PATH '$[1]')) hist
WHERE schema_name = 'dbt3' and table_name = 'customer' and column_name = 'c_mktsegment';
+------------+-----------+-------+
| value | cumulfreq | freq |
+------------+-----------+-------+
| AUTOMOBILE | 19.8% | 19.8% |
| BUILDING | 39.9% | 20.1% |
| FURNITURE | 59.9% | 19.9% |
| HOUSEHOLD | 79.9% | 20.1% |
| MACHINERY | 100.0% | 20.1% |
+------------+-----------+-------+
你也能夠用下面語法刪除直方圖信息。
mysql> ANALYZE TABLE customer DROP HISTOGRAM on c_mktsegment;
+---------------+-----------+----------+---------------------------------------------------------+
| Table | Op | Msg_type | Msg_text |
+---------------+-----------+----------+---------------------------------------------------------+
| dbt3.customer | histogram | status | Histogram statistics removed for column 'c_mktsegment'. |
+---------------+-----------+----------+---------------------------------------------------------+
1 row in set (0.00 sec)
Buckets
你會注意到,當咱們建立一個直方圖時,咱們須要指定buckets的數量,事實上,數據被分紅包含特定值以及他們基數(cardinality)的一組Buckets,若是在上一個例子中檢查直方圖的類型,你會發現它是等寬直方圖(singleton)
"histogram-type": "singleton",
這種類型的直方圖最好的,由於基數是針對單個特定值。 若是此次我僅使用2個存儲桶(buckets)來從新建立直方圖(請記住,在c_mktsegment列中有4個不一樣的值):
mysql> ANALYZE TABLE customer UPDATE HISTOGRAM ON c_mktsegment WITH 2 BUCKETS;
+---------------+-----------+----------+---------------------------------------------------------+
| Table | Op | Msg_type | Msg_text |
+---------------+-----------+----------+---------------------------------------------------------+
| dbt3.customer | histogram | status | Histogram statistics created for column 'c_mktsegment'. |
+---------------+-----------+----------+---------------------------------------------------------+
若是我檢查直方圖的類型:
mysql> SELECT SCHEMA_NAME, TABLE_NAME, COLUMN_NAME,
JSON_PRETTY(HISTOGRAM)
FROM information_schema.column_statistics
WHERE COLUMN_NAME = 'c_mktsegment'\G
*************************** 1. row ***************************
SCHEMA_NAME: dbt3
TABLE_NAME: customer
COLUMN_NAME: c_mktsegment
JSON_PRETTY(HISTOGRAM): {
"buckets": [
[
"base64:type254:QVVUT01PQklMRQ==",
"base64:type254:RlVSTklUVVJF",
0.5996992690844636,
3
],
[
"base64:type254:SE9VU0VIT0xE",
"base64:type254:TUFDSElORVJZ",
1.0,
2
]
],
"data-type": "string",
"null-values": 0.0,
"collation-id": 255,
"last-updated": "2018-03-02 20:42:26.165898",
"sampling-rate": 0.6709158000670916,
"histogram-type": "equi-height",
"number-of-buckets-specified": 2
}
如今的直方圖類型是等高直方圖,這意味着將連續範圍的值分組到存儲桶中,以使落入每一個存儲桶的數據項的數量相同。
結論:
直方圖對那些不是索引中第一列的列很是有用,這些列用於JOIN、IN子查詢(IN-subqueries)或ORDER BY…LIMIT的查詢的WHERE條件下使用。
另外, 能夠考慮嘗試使用足夠的存儲通來獲取等寬直方圖。