pytorch tutorial 1

這裏用torch 作一個最簡單的測試網絡

 

目標就是咱們用torch 創建一個一層的網絡,而後擬合一組能夠迴歸的數據app

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt

x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size())

x, y = Variable(x), Variable(y)

這裏咱們先早出來假數據,這裏須要注意的是,最新版本的torch已經不須要variable了測試

接着咱們來搭建咱們的網絡優化

class Net(torch.nn.Module):

    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    # 前向傳播
    def forward(self, x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x

 

咱們作了個 1-10-1這樣的單隱藏層的網絡spa

net = Net(n_feature=1, n_hidden=10, n_output=1)
print(net)

# define optimizer
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()

接着咱們選SGD來優化,選MSE作loss functioncode

開始訓練blog

plt.ion()

# begin training
for t in range(200):
    prediction = net(x)
    loss = loss_func(prediction, y)   # must be (1. nn output, 2. target)

    optimizer.zero_grad()  # clear gradients for next train
    loss.backward()   # backpropagation, compute gradients
    optimizer.step()    # apply gradients
    if t % 5 == 0:
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)

plt.ioff()
plt.show()

大概效果是這樣get

相關文章
相關標籤/搜索