這裏使用pytorch進行一個簡單的二分類模型python
導入全部咱們須要的庫網絡
import torch import matplotlib.pyplot as plt import torch.nn.functional as F
接着咱們這裏 生成咱們須要的假數據優化
# set seed torch.manual_seed(1) # make fake data n_data = torch.ones(100, 2) x0 = torch.normal(2 * n_data, 1) y0 = torch.zeros(100) x1 = torch.normal(-2 * n_data, 1) y1 = torch.ones(100) x = torch.cat((x0, x1), 0).type(torch.FloatTensor) y = torch.cat((y0, y1), ).type(torch.LongTensor)
咱們先定義好咱們須要的net的這個類3d
class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.out = torch.nn.Linear(n_hidden, n_output) def forward(self, x): x = F.relu(self.hidden(x)) x = self.out(x) return x
如今開始搭建咱們須要的網絡orm
咱們構建一個只有1個隱藏層的網絡blog
用SGD的方法對損失方程進行優化ci
而後用交叉熵來做爲咱們loss functionget
net = Net(n_feature=2, n_hidden=10, n_output=2) print(net) optimizer = torch.optim.SGD(net.parameters(), lr=0.0015) loss_func = torch.nn.CrossEntropyLoss()
接着咱們開始訓練咱們的網絡it
plt.ion() for t in range(200): out = net(x) loss = loss_func(out, y) optimizer.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients optimizer.step() if t % 2 == 0: plt.cla() predcition = torch.max(out, 1)[1] pred_y = predcition.data.numpy() target_y = y.data.numpy() plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn') accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size) plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1) plt.ioff() plt.show()
接着咱們能夠看到 已經把咱們作的假數據成功分紅了兩類io