Step 1, donwload the Miniconda and installing it on your computer.python
The reason why explain installing conda is that some of classmates don`t have a conda environment on their computer.web
https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/bash
Step 2, create a conda virtual envriommentapp
In this ariticle, we assume that there is a CPU version of PyTorch is going to be installed. To specifically distinguish CPU version and GPU version, we`re going to create a virtual environment named "PyTorch-CPU".dom
In the Conda Prompt run the following commands:ide
conda create -n PyTorch-CPU pip
Step 3, install PyTorchui
On the website of PyTorch(https://pytorch.org/), there is a guidance on the page. To chose the most appropriate options(e.g. as the follow figure).this
In the Conda Prompt run the following commands:spa
activate PyTorh-CPU conda install pytorch-cpu torchvision-cpu -c pytorch
Congratulations, installation of PyTorch is complete!code
Before we start ours building. We have to access the dataset and clean it.
Here we have accessed 西瓜數據集3.0. And we convert the character-described features to numeric.
# encoding:utf8 # 西瓜3.0 數據集 waterMelons = [ # 1 ['青綠', '蜷縮', '濁響', '清晰', '凹陷', '硬滑', '好瓜'], # 2 ['烏黑', '蜷縮', '沉悶', '清晰', '凹陷', '硬滑', '好瓜'], # 3 ['烏黑', '蜷縮', '濁響', '清晰', '凹陷', '硬滑', '好瓜'], # 4 ['青綠', '蜷縮', '沉悶', '清晰', '凹陷', '硬滑', '好瓜'], # 5 ['淺白', '蜷縮', '濁響', '清晰', '凹陷', '硬滑', '好瓜'], # 6 ['青綠', '稍蜷', '濁響', '清晰', '稍凹', '軟粘', '好瓜'], # 7 ['烏黑', '稍蜷', '濁響', '稍糊', '稍凹', '軟粘', '好瓜'], # 8 ['烏黑', '稍蜷', '濁響', '清晰', '稍凹', '硬滑', '好瓜'], # 9 ['烏黑', '稍蜷', '沉悶', '稍糊', '稍凹', '硬滑', '壞瓜'], # 10 ['青綠', '硬挺', '清脆', '清晰', '平坦', '軟粘', '壞瓜'], # 11 ['淺白', '硬挺', '清脆', '模糊', '平坦', '硬滑', '壞瓜'], # 12 ['淺白', '蜷縮', '濁響', '模糊', '平坦', '軟粘', '壞瓜'], # 13 ['青綠', '稍蜷', '濁響', '稍糊', '凹陷', '硬滑', '壞瓜'], # 14 ['淺白', '稍蜷', '沉悶', '稍糊', '凹陷', '硬滑', '壞瓜'], # 15 ['烏黑', '稍蜷', '濁響', '清晰', '稍凹', '軟粘', '壞瓜'], # 16 ['淺白', '蜷縮', '濁響', '模糊', '平坦', '硬滑', '壞瓜'], # 17 ['青綠', '蜷縮', '沉悶', '稍糊', '稍凹', '硬滑', '壞瓜'] ] features = list() # [[青綠, 烏黑, 淺白], [蜷縮, 硬挺...], ...] def numeric(data): l = list() for i,s in enumerate(data): val = features[i].index(s) l.append(val) return l if __name__ == '__main__': for melon in waterMelons: for i, feature in enumerate(melon): try: if feature not in features[i]: features[i].append(feature) except IndexError: features.append([feature]) f = open('data/WaterMelon.txt', encoding='utf8', mode='w') for melon in waterMelons: val = numeric(melon) f.write("%s\n" % val)
Here we implement a neural network with input layer and log softmax layer.
There are 12 parameters need to be trained:
\[ input \times hiddens \times output = parameters\\ 6 \times 2 = 12 \]
# encoding:utf8 import torch from sklearn.model_selection import train_test_split class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.layer = torch.nn.Linear(6, 2) self.softmax = torch.nn.LogSoftmax(dim=1) def forward(self, x): out = self.layer(x) out = self.softmax(out) return out if __name__ == '__main__': x, y = list(), list() with open('data/WaterMelon.txt', encoding='utf8') as f: for line in f: l = eval(line.strip()) x.append(l[:-1]) y.append(l[-1]) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33) x_train, x_test, y_train, y_test = torch.Tensor(x_train), torch.Tensor(x_test), torch.Tensor(y_train).long(), torch.Tensor(y_test).long() model = Model() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) criticism = torch.nn.CrossEntropyLoss() # train for epoch in range(500): out = model(x_train) loss = criticism(out, y_train) optimizer.zero_grad() loss.backward() optimizer.step() # test y_pred = model(x_test) _, predicted = torch.max(y_pred, 1) acc = torch.sum(y_test == predicted ).numpy() / len(x_test) print(acc)
We got the accuracy 0.8, sometimes we got 1.
LOL!