看半天題,而後才發現是統計最大值。ios
int _; int main() { ios_base::sync_with_stdio(false), cin.tie(0); for (cin >> _; _--;) { int n; cin >> n; vector<int> a(n + 1, 0); for (int i = 0, x; i < n; ++i) cin >> x, a[x]++; cout << *max_element(a.begin(), a.end()) << "\n"; } return 0; }
int _; int dp[1010]; bool f(int x, int d) { while (x) { if (x % 10 == d) return true; x /= 10; } return false; } int main() { ios_base::sync_with_stdio(false), cin.tie(0); for (cin >> _; _--;) { int q, x, d; cin >> q >> d; vector<int> v(15, 1e9); for (int i = 1; i <= 100; ++i) { x = i % d; if (f(i, d)) v[x] = min(v[x], i); } for (int i = 1; i <= q; ++i) { cin >> x; if (v[x % d] <= x) cout << "YES\n"; else cout << "NO\n"; } } return 0; }
對d數組排個序,看一個每一個出現的奇偶次數,其實 d 的順序就是 a(絕對值) 的順序對應過去的,兩組應該是對稱出現的。。c++
那能夠按順序求出對應的 a,要是求不出來或者出現重複,那麼就失敗,不然成功。數組
int _; int main() { ios_base::sync_with_stdio(false), cin.tie(0); for (cin >> _; _--;) { int n; cin >> n; vector<ll> d(2 * n); for (auto& x : d) cin >> x; sort(d.rbegin(), d.rend()); // 注意這裏是逆排 bool yn = 1; ll sum = 0; for (int i = 2; i < 2 * n; i += 2) if (d[i] == d[i - 1]) yn = 0; for (int i = 0; i < n && yn; i++) { if (d[2 * i] != d[2 * i + 1]) { yn = 0; break; } if ((d[2 * i] - sum) <= 0 or (d[2 * i] - sum) % (n - i) != 0) { yn = 0; break; } ll cur = (d[2 * i] - sum) / (n - i); if (cur & 1) { yn = 0; break; } sum += cur; } cout << (yn ? "YES\n" : "NO\n"); } return 0; }
\(2*x−y\) x想成 \(x + x − y\) ,也就是x加上x 和y的差值,這個差值能夠是正的也能夠是負的。執行完以後咱們能夠對新的數字繼續增長這個差值,因此咱們就能夠根據兩個數字得出一個等差數列。數列內的數字均可以倍包含在數組a裏。spa
而咱們的目的是找出一個最小的差值 \(d\),而後分別比對每個 \(a[i]\)看是否能夠由 \(a[i]\)和若干個 \(d\) 獲得 k。先對 a 數組排個序,而後對全部的$ a[ i ]− a[ i − 1] $求 gcd
,就得出了那個最小的差值 d。code
// RioTian 21/01/29 #include <bits/stdc++.h> using namespace std; using ll = long long; int _, n; ll k; ll gcd(ll a, ll b) { return a % b == 0 ? b : gcd(b, a % b); } int main() { ios_base::sync_with_stdio(false), cin.tie(0); for (cin >> _; _--;) { cin >> n >> k; vector<ll> a(n + 1); for (int i = 1; i <= n; i++) cin >> a[i]; sort(a.begin() + 1, a.end()); ll tmp = a[2] - a[1]; for (int i = 2; i < n; i++) tmp = gcd(tmp, a[i + 1] - a[i]); ll x = llabs(a[1] - k); cout << (x % tmp == 0 ? "YES\n" : "NO\n"); } return 0; }