Java拾遺:003 - ConcurrentHashMap源碼解讀

JDK1.7 ConcurrentHashMap實現原理淺析

在多線程場景下使用HashMap會形成死循環,CPU100%等問題,因此咱們不能在多線程場景下使用HashMap,另一個集合類HashTable是線程安全的,但其使用synchronized這種粗粒度的鎖來實現的,因此併發場景下性能低下,在多線程(併發)場景下咱們推薦使用ConcurrentHashMap類。 這裏放一張ConcurrentHashMap的類圖: ConcurrentHashMap.pngjava

能夠看出該類也實現了Map接口,因此一般能夠直接替換HashMap使用而不用修改業務代碼。node

HashTable之因此性能低下,緣由是多線程競爭同一把鎖(HashTable粗暴的爲整個存儲結構加了鎖),而ConcurrentHashMap則改進這了一點。該類經過分段加鎖來下降資源競爭,底層的存儲數組結構再也不像HashMap同樣直接是一個哈希表(數組),而是使用Segment數組來實現分片,Segment類繼承了ReentrantLock類,因此它自己也是一個可重入鎖,每一個Segment則至關於一個HashMap,一樣使用哈希表存儲數據,每一個Bucket都是一個鏈表,其內部實現思想與HashMap基本一致,不一樣的是put、remove等方法都是加了鎖的。這樣分段加鎖的好處是,若是兩個線程操做的不是同一個Segment,則相互不影響,不用相互等待,從而提高了性能。數組

Segment數組自己是不加鎖的,那麼在向ConcurrentHashMap中添加元素時,會根據鍵計算出的HashCode來定位Segment,這個過程由於不涉及修改操做,因此不須要加鎖。而針對特定的Segment內部數據進行操做,則須要加鎖,下面以JDK1.7版ConcurrentHashMap源碼爲例進行解讀。安全

JDK1.7 ConcurrentHashMap源碼解讀

ConcurrentHashMap底層實現涉及多個內部類,這裏簡述一下多線程

  • HashEntry類
static final class HashEntry<K,V> {
        final int hash;
        final K key;
        volatile V value;
        volatile HashEntry<K,V> next;
        // ... ...
    }
  • Segment類(這裏刪除了代碼細節和註釋)
static final class Segment<K,V> extends ReentrantLock implements Serializable {

        static final int MAX_SCAN_RETRIES =
            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
        transient volatile HashEntry<K,V>[] table;
        transient int count;
        transient int modCount;
        transient int threshold;
        final float loadFactor;

        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {}

        final V put(K key, int hash, V value, boolean onlyIfAbsent) {}

        @SuppressWarnings("unchecked")
        private void rehash(HashEntry<K,V> node) {}

        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {}

        private void scanAndLock(Object key, int hash) {}

        final V remove(Object key, int hash, Object value) {}

        final boolean replace(K key, int hash, V oldValue, V newValue) {}

        final V replace(K key, int hash, V value) {}

        final void clear() {}
    }

ConcurrentHashMap中分段是由Segment數組實現的,而每一個Segment的內部存儲結構爲哈希表(數組),而每一個Bucket則是由HashEntry構成的鏈表組成(這點與HashMap是同樣的)。併發

下面經過ConcurrentHashMap中的幾個主要方法來解讀less

構造方法
public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        // 找到恰好比 concurrencyLevel 大或相等的2的整數次冪
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        this.segmentShift = 32 - sshift;
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        // 計算每段容量(取恰好大於等於c的2的整數次冪)
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

與HashMap不一樣該類的構造方法多了一個concurrencyLevel參數,該參數主要用於控制分段數,該類的其它構造方法都脫胎與該方法,這裏再也不贅述,其中無參構造方法中的參數默認值分別是:initialCapacity=16loadFactor=0.75fconcurrencyLevel=16。 構造方法中分別初始化了:分段數、每段容器大小、Segment數組和第一個Segment節點。ssh

isEmpty和size方法
public boolean isEmpty() {
        long sum = 0L;
        final Segment<K,V>[] segments = this.segments;
        for (int j = 0; j < segments.length; ++j) {
            Segment<K,V> seg = segmentAt(segments, j);
            if (seg != null) {
                if (seg.count != 0)
                    return false;
                sum += seg.modCount;
            }
        }
        if (sum != 0L) { // recheck unless no modifications
            for (int j = 0; j < segments.length; ++j) {
                Segment<K,V> seg = segmentAt(segments, j);
                if (seg != null) {
                    if (seg.count != 0)
                        return false;
                    sum -= seg.modCount;
                }
            }
            if (sum != 0L)
                return false;
        }
        return true;
    }

    public int size() {
        // Try a few times to get accurate count. On failure due to
        // continuous async changes in table, resort to locking.
        final Segment<K,V>[] segments = this.segments;
        int size;
        boolean overflow; // true if size overflows 32 bits
        long sum;         // sum of modCounts
        long last = 0L;   // previous sum
        int retries = -1; // first iteration isn't retry
        try {
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                for (int j = 0; j < segments.length; ++j) {
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)
                            overflow = true;
                    }
                }
                if (sum == last)
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return overflow ? Integer.MAX_VALUE : size;
    }

兩個實現方法的思路相同,都是遍歷所有Segment,再計算每一個Segment內部元素個數。須要注意的是爲了防止在方法執行過程當中,Segment自己會發生變化(如:添加、刪除元素等),但遍歷過程當中對Segment加鎖,方法執行結束後釋放鎖,因此這兩個方法的性能不如HashMap的高(應用場景不一樣,自己也沒什麼可比性)。async

put、putIfAbsent方法
public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }

    public V putIfAbsent(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject
             (segments, (j << SSHIFT) + SBASE)) == null)
            s = ensureSegment(j);
        return s.put(key, hash, value, true);
    }

    static final class Segment<K,V> extends ReentrantLock implements Serializable {
        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> first = entryAt(tab, index);
                for (HashEntry<K,V> e = first;;) {
                    if (e != null) {
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                            oldValue = e.value;
                            if (!onlyIfAbsent) {
                                e.value = value;
                                ++modCount;
                            }
                            break;
                        }
                        e = e.next;
                    }
                    else {
                        if (node != null)
                            node.setNext(first);
                        else
                            node = new HashEntry<K,V>(hash, key, value, first);
                        int c = count + 1;
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                            rehash(node);
                        else
                            setEntryAt(tab, index, node);
                        ++modCount;
                        count = c;
                        oldValue = null;
                        break;
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }
  }

put方法的邏輯比較深,但有HashMap的源碼基礎的話,其實也不復雜。在ConcurrentHashMap中的put方法實際上只是根據HashCode找到對應的Segment,這個過程不須要加鎖,而實際put動做是由Segment類中的put方法完成的。 該方法相比HashMap中的put方法,只是增長了鎖的機制(畢竟是面向多線程場景)。性能

containsKey、containsValue、contains方法
public boolean containsKey(Object key) {
        Segment<K,V> s; // same as get() except no need for volatile value read
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return true;
            }
        }
        return false;
    }

只是簡單的查找,與size不一樣的是,不須要加鎖(確實也沒有加鎖的必要,若是元素存在則再也不添加,可使用putIfAbsent方法)。

get方法
public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }
remove方法
public V remove(Object key) {
        int hash = hash(key);
        Segment<K,V> s = segmentForHash(hash);
        return s == null ? null : s.remove(key, hash, null);
    }

    static final class Segment<K,V> extends ReentrantLock implements Serializable {
        final V remove(Object key, int hash, Object value) {
            if (!tryLock())
                scanAndLock(key, hash);
            V oldValue = null;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> e = entryAt(tab, index);
                HashEntry<K,V> pred = null;
                while (e != null) {
                    K k;
                    HashEntry<K,V> next = e.next;
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        V v = e.value;
                        if (value == null || value == v || value.equals(v)) {
                            if (pred == null)
                                setEntryAt(tab, index, next);
                            else
                                pred.setNext(next);
                            ++modCount;
                            --count;
                            oldValue = v;
                        }
                        break;
                    }
                    pred = e;
                    e = next;
                }
            } finally {
                unlock();
            }
            return oldValue;
        }
    }

結語

偷懶了,偷懶了,最近每天看源碼,看得頭大,這篇就到這裏了(草草結束),主要是理解實現原理,後面再完善細節吧。

相關文章
相關標籤/搜索