Python Machine Learning: Scikit-Learn Tutorial

這是一篇翻譯的博客,原文連接在這裏。這是我看的爲數很少的介紹scikit-learn簡介而全面的文章,特別適合入門。我這裏把這篇文章翻譯一下,英語好的同窗能夠直接看原文。python

大部分喜歡用Python來學習數據科學的人,應該聽過scikit-learn,這個開源的Python庫幫咱們實現了一系列有關機器學習,數據處理,交叉驗證和可視化的算法。其提供的接口很是好用。算法

這就是爲何DataCamp(原網站)要爲那些已經開始學習Python庫卻沒有一個簡明且方便的總結的人提供這個總結。(原文是cheat sheet,翻譯過來就是小抄,我這裏翻譯成總結,感受意思上更積極點)。或者你壓根都不知道scikit-learn如何使用,那這份總結將會幫助你快速的瞭解其相關的基本知識,讓你快速上手。數組

你會發現,當你處理機器學習問題時,scikit-learn簡直就是神器。dom

這份scikit-learn總結將會介紹一些基本步驟讓你快速實現機器學習算法,主要包括:讀取數據,數據預處理,如何建立模型來擬合數據,如何驗證你的模型以及如何調參讓模型變得更好。機器學習

總的來講,這份總結將會經過示例代碼讓你開始你的數據科學項目,你能馬上建立模型,驗證模型,調試模型。(原文提供了pdf版的下載,內容和原文差很少)ide

A Basic Example

>>> from sklearn import neighbors, datasets, preprocessing
>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.metrics import accuracy_score
>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, :2], iris.target
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> X_test = scaler.transform(X_test)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5)
>>> knn.fit(X_train, y_train)
>>> y_pred = knn.predict(X_test)
>>> accuracy_score(y_test, y_pred)

(補充,這裏看不懂沒關係,其實就是個小例子,後面會詳細解答)學習

Loading The Data

你的數據須要是numeric類型,而後存儲成numpy數組或者scipy稀疏矩陣。咱們也接受其餘能轉換成numeric數組的類型,好比Pandas的DataFrame。網站

>>> import numpy as np
>>> X = np.random.random((10,5))
>>> y = np.array(['M','M','F','F','M','F','M','M','F','F','F'])
>>> X[X < 0.7] = 0

Preprocessing The Data

Standardization

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().fit(X_train)
>>> standardized_X = scaler.transform(X_train)
>>> standardized_X_test = scaler.transform(X_test)

Normalization

>>> from sklearn.preprocessing import Normalizer
>>> scaler = Normalizer().fit(X_train)
>>> normalized_X = scaler.transform(X_train)
>>> normalized_X_test = scaler.transform(X_test)

Binarization

>>> from sklearn.preprocessing import Binarizer
>>> binarizer = Binarizer(threshold=0.0).fit(X)
>>> binary_X = binarizer.transform(X)

Encoding Categorical Features

>>> from sklearn.preprocessing import LabelEncoder
>>> enc = LabelEncoder()
>>> y = enc.fit_transform(y)

Imputing Missing Values

>>>from sklearn.preprocessing import Imputer
>>>imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>>imp.fit_transform(X_train)

Generating Polynomial Features

>>> from sklearn.preprocessing import PolynomialFeatures)
>>> poly = PolynomialFeatures(5))
>>> oly.fit_transform(X))

Training And Test Data

>>> from sklearn.cross_validation import train_test_split)
>>> X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=0))

Create Your Model

Supervised Learning Estimators

Linear Regression

>>> from sklearn.linear_model import LinearRegression)
>>> lr = LinearRegression(normalize=True))

Support Vector Machines (SVM)

>>> from sklearn.svm import SVC)
>>> svc = SVC(kernel='linear'))

Naive Bayes

>>> from sklearn.naive_bayes import GaussianNB)
>>> gnb = GaussianNB())

KNN

>>> from sklearn import neighbors)
>>> knn = neighbors.KNeighborsClassifier(n_neighbors=5))

Unsupervised Learning Estimators

Principal Component Analysis (PCA)

>>> from sklearn.decomposition import PCA)
>>> pca = PCA(n_components=0.95))

K Means

>>> from sklearn.cluster import KMeans)
>>> k_means = KMeans(n_clusters=3, random_state=0))

Model Fitting

Supervised learning

>>> lr.fit(X, y))
>>> knn.fit(X_train, y_train))
>>> svc.fit(X_train, y_train))

Unsupervised Learning

>>> k_means.fit(X_train))
>>> pca_model = pca.fit_transform(X_train))

Prediction

Supervised Estimators

>>> y_pred = svc.predict(np.random.random((2,5))))
>>> y_pred = lr.predict(X_test))
>>> y_pred = knn.predict_proba(X_test))

Unsupervised Estimators

>>> y_pred = k_means.predict(X_test))

Evaluate Your Model's Performance

Classification Metrics

Accuracy Score

>>> knn.score(X_test, y_test))
>>> from sklearn.metrics import accuracy_score)
>>> accuracy_score(y_test, y_pred))

Classification Report

>>> from sklearn.metrics import classification_report)
>>> print(classification_report(y_test, y_pred)))

Confusion Matrix

>>> from sklearn.metrics import confusion_matrix)
>>> print(confusion_matrix(y_test, y_pred)))

Regression Metrics

Mean Absolute Error

>>> from sklearn.metrics import mean_absolute_error)
>>> y_true = [3, -0.5, 2])
>>> mean_absolute_error(y_true, y_pred))

Mean Squared Error

>>> from sklearn.metrics import mean_squared_error)
>>> mean_squared_error(y_test, y_pred))

R2 Score

>>> from sklearn.metrics import r2_score)
>>> r2_score(y_true, y_pred))

Clustering Metrics

Adjusted Rand Index

>>> from sklearn.metrics import adjusted_rand_score)
>>> adjusted_rand_score(y_true, y_pred))

Homogeneity

>>> from sklearn.metrics import homogeneity_score)
>>> homogeneity_score(y_true, y_pred))

V-measure

>>> from sklearn.metrics import v_measure_score)
>>> metrics.v_measure_score(y_true, y_pred))

Cross-Validation

>>> print(cross_val_score(knn, X_train, y_train, cv=4))
>>> print(cross_val_score(lr, X, y, cv=2))

Tune Your Model

>>> from sklearn.grid_search import GridSearchCV
>>> params = {"n_neighbors": np.arange(1,3), "metric": ["euclidean", "cityblock"]}
>>> grid = GridSearchCV(estimator=knn,param_grid=params)
>>> grid.fit(X_train, y_train)
>>> print(grid.best_score_)
>>> print(grid.best_estimator_.n_neighbors)

Randomized Parameter Optimization

>>> from sklearn.grid_search import RandomizedSearchCV
>>> params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]}
>>> rsearch = RandomizedSearchCV(estimator=knn,
   param_distributions=params,
   cv=4,
   n_iter=8,
   random_state=5)
>>> rsearch.fit(X_train, y_train)
>>> print(rsearch.best_score_)

Going Further

學習完上面的例子後,你能夠經過our scikit-learn tutorial for beginners來學習更多的例子。另外你能夠學習matplotlib來可視化數據。lua

不要錯事後續教程 Bokeh cheat sheet, the Pandas cheat sheet or the Python cheat sheet for data science.idea

相關文章
相關標籤/搜索