Matplotlib模塊在繪製圖表時,默認先創建一張畫布,而後在畫布中顯示繪製的圖表。python
若是想要在一張畫布中繪製多個圖表,可使用subplot()函數將畫布劃分爲幾個區域,而後在各個區域中分別繪製不一樣的圖表。數組
subplot()函數的參數爲3個整型數字:安全
演示代碼以下:dom
import matplotlib.pyplot as plt # 若是值中有中文字符,則必須在繪製圖表前加上這兩行代碼 plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] plt.rcParams['axes.unicode_minus'] = False x = ['1月', '2月', '3月', '4月', '5月', '6月', '7月', '8月', '9月', '10月', '11月', '12月'] y = [50, 45, 65, 76, 75, 85, 55, 78, 86, 89, 94, 90] plt.subplot(2, 2, 1) plt.pie(y, labels = x, labeldistance = 1.1, startangle = 90, counterclock = False) plt.subplot(2, 2, 2) # 參數width用於設置柱子的寬度,默認值爲0.8。若是設置爲1,則各個柱子會緊密相連;若是設置爲大於1的數,則各個柱子會相互交疊 plt.bar(x, y, width = 0.5, color = 'r') plt.subplot(2, 2, 3) # 參數color用於設置柱子的填充顏色,具體取值見後面的說明 plt.stackplot(x, y, color = 'r') plt.subplot(2, 2, 4) plt.plot(x, y, color = 'r', linestyle = 'solid', linewidth = 2, marker = 'o', markersize = 10) plt.show()
輸出結果:
函數
用顏色名的英文單詞或其簡寫定義的8種基礎顏色,具體見:
性能
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] plt.rcParams['axes.unicode_minus'] = False x = ['1月', '2月', '3月', '4月', '5月', '6月', '7月', '8月', '9月', '10月', '11月', '12月'] y = [50, 45, 65, 76, 75, 85, 55, 78, 86, 89, 94, 90] # 這裏加了標籤 plt.bar(x, y, width=0.6, color='r', label='銷售額(萬元)') # 這裏加了標題,loc還能夠是right和left plt.title(label='銷售額對比圖', fontdict={'family': 'KaiTi', 'color': 'k', 'size': 30}, loc='center') # 座標上的標籤 plt.xlabel('月份', fontdict={'family': 'SimSun', 'color': 'k', 'size': 20}, labelpad=20) plt.ylabel('銷售額', fontdict={'family': 'SimSun', 'color': 'k', 'size': 20}, labelpad=20) # legend()函數用於添加圖例 plt.legend(loc='upper left', fontsize=15) # zip() 函數用於將可迭代的對象做爲參數,將對象中對應的元素打包成一個個元組,而後返回由這些元組組成的列表。 for a,b in zip(x, y): # text()函數的功能是在圖表座標系的指定位置添加文本。參數ha是horizontalalignment的簡稱,相對應有va plt.text(x=a, y=b, s=b, ha='center', va='bottom', fontdict={'family': 'KaiTi', 'color': 'k', 'size': 20}) plt.show()
輸出結果
spa
氣泡圖是一種展現三個變量之間關係的圖表,它實際上是在散點圖的基礎上升級改造而成的,在原有的x座標和y座標兩個變量的基礎上,引入第三個變量,並用氣泡的大小表示。excel
pip install openpyxl
產品銷售統計.xls 內容code
產品名稱 | 銷售量(件) | 銷售額(元) | 毛利率(%) |
---|---|---|---|
牛仔褲 | 125 | 6800 | 30 |
連衣裙 | 278 | 5600 | 20 |
運動褲 | 366 | 7800 | 35 |
短褲 | 452 | 5800 | 10 |
短裙 | 365 | 5400 | 50 |
揹帶褲 | 258 | 10000 | 22 |
半身裙 | 369 | 3600 | 15 |
闊腿褲 | 566 | 7800 | 8 |
代碼以下:對象
import matplotlib.pyplot as plt import pandas as pd plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] plt.rcParams['axes.unicode_minus'] = False data = pd.read_excel('產品銷售統計.xls') n = data['產品名稱'] x = data['銷售量(件)'] y = data['銷售額(元)'] z = data['毛利率(%)'] plt.scatter(x, y, s=z * 300, color='r', marker='o') plt.xlabel('銷售量(件)', fontdict={'family': 'Microsoft YaHei', 'color': 'k', 'size': 20}, labelpad=20) plt.ylabel('銷售額(元)', fontdict={'family': 'Microsoft YaHei', 'color': 'k', 'size': 20}, labelpad=20) plt.title('銷售量、銷售額與毛利率關係圖', fontdict={'family': 'Microsoft YaHei', 'color': 'k', 'size': 30}, loc='center') for a, b, c in zip(x, y, n): plt.text(x=a, y=b, s=c, ha='center', va='center', fontsize=15, color='w') plt.xlim(50, 600) plt.ylim(2900, 11000) plt.show()
輸出結果:
組合圖是指在一個座標系中繪製多張圖表,其實現方式也很簡單,在使用Matplotlib模塊中的函數繪製圖表時設置多組y座標值便可。
銷售業績表.xls
月份 | 銷售額(萬元) | 同比增加率 |
---|---|---|
1月 | ¥36.00 | 10% |
2月 | ¥25.00 | 8% |
3月 | ¥36.12 | 20% |
4月 | ¥69.30 | 50% |
5月 | ¥26.90 | 15% |
6月 | ¥32.00 | 11% |
7月 | ¥45.00 | 26% |
8月 | ¥56.00 | 13% |
9月 | ¥25.60 | 4% |
10月 | ¥36.21 | 5% |
11月 | ¥25.00 | 7% |
12月 | ¥59.00 | 30% |
import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] plt.rcParams['axes.unicode_minus'] = False data = pd.read_excel('銷售業績表.xlsx') x = data['月份'] y1 = data['銷售額(萬元)'] y2 = data['同比增加率'] plt.bar(x, y1, color = 'c', label = '銷售額(萬元)') plt.legend(loc = 'upper left', fontsize = 15) # 使用twinx()函數爲圖表添加次座標軸 plt.twinx() plt.plot(x, y2, color = 'r', linewidth = 3, label = '同比增加率') plt.legend(loc = 'upper right', fontsize = 15) plt.show()
輸出結果:
直方圖用於展現數據的分佈狀況,使用Matplotlib模塊中的hist()函數能夠繪製直方圖
import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] plt.rcParams['axes.unicode_minus'] = False data = pd.read_excel('客戶年齡統計表.xlsx') x = data['年齡'] plt.hist(x, bins = 9) plt.xlim(15, 60) plt.ylim(0, 40) plt.title('年齡分佈直方圖', fontsize = 20) plt.xlabel('年齡') plt.ylabel('人數') plt.grid(b = True, linestyle = 'dotted', linewidth = 1) plt.show()
輸出結果
雷達圖能夠同時比較和分析多個指標。該圖表能夠當作一條或多條閉合的折線,所以,使用繪製折線圖的plot()函數也能夠繪製雷達圖。
汽車性能指標分值統計表.xlsx
性能評價指標 | A品牌 | B品牌 | C品牌 |
---|---|---|---|
動力性 | 1 | 3 | 10 |
燃油經濟性 | 2 | 6 | 7 |
制動性 | 1 | 10 | 5 |
操控穩定性 | 3 | 10 | 2 |
行駛平順性 | 2 | 6 | 1 |
經過性 | 4 | 7 | 2 |
安全性 | 8 | 2 | 1 |
環保性 | 9 | 1 | 3 |
方便性 | 10 | 3 | 0 |
溫馨性 | 8 | 2 | 1 |
經濟性 | 4 | 1 | 10 |
容量性 | 2 | 2 | 8 |
代碼以下:
import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False data = pd.read_excel('汽車性能指標分值統計表.xlsx') data = data.dropna(axis=1) data = data.set_index('性能評價指標') data = data.T data.index.name = '品牌' def plot_radar(data, feature): columns = ['動力性', '燃油經濟性', '制動性', '操控穩定性', '行駛平順性', '經過性', '安全性', '環保性', '方便性', '溫馨性', '經濟性', '容量性'] colors = ['r', 'g', 'y'] # 設置雷達圖的角度,用於平分切開一個平面 # linspace(1,10,x) 建立1-10的等差數組,個數爲 x,默認50個;endpoint參數指定是否包含終值,默認值爲True,即包含終值。 angles = np.linspace(0.1 * np.pi, 2.1 * np.pi, len(columns), endpoint = False) # 使雷達圖封閉起來 angles = np.concatenate((angles, [angles[0]])) # figsize:指定figure的寬和高,單位爲英寸; figure = plt.figure(figsize = (6, 6)) # 設置爲極座標格式;subplot(nrows,ncols,sharex,sharey,subplot_kw,**fig_kw)建立單個子圖,下面兩句效果相同 ax = figure.add_subplot(111, polar=True) # ax = figure.add_subplot(1, 1, 1, projection = 'polar') for i, c in enumerate(feature): stats = data.loc[c] stats = np.concatenate((stats, [stats[0]])) ax.plot(angles, stats, '-', linewidth = 2, c = colors[i], label = str(c)) ax.fill(angles, stats, color = colors[i], alpha = 0.75) # bbox_to_anchor這個參數,能夠把圖例放在圖外面 # bbox_to_anchor:表示legend的位置,前一個表示左右,後一個表示上下。 # 當使用這個參數時。loc將再也不起正常的做用,ncol=3表示圖例三列顯示。 ax.legend(loc = 4, bbox_to_anchor = (1.15, -0.07)) #設置極軸範圍 ax.set_ylim(0,10) # ax.set_yticklabels([2, 4, 6, 8, 10]) # 添加每一個特質的標籤 columns = np.concatenate((columns, [columns[0]])) ax.set_thetagrids(angles*180/np.pi, columns, fontsize = 12) #添加標題 plt.title('汽車性能指標雷達圖') plt.show() return figure figure = plot_radar(data, ['A品牌', 'B品牌', 'C品牌']) # figure = plot_radar(data, ['B品牌'])
樹狀圖經過矩形的面積、排列和顏色直觀地展現多個項目的數據比例關係。要繪製該圖表,需結合使用Matplotlib模塊與squarify模塊。
import squarify as sf import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] plt.rcParams['axes.unicode_minus'] = False x = ['上海', '北京', '重慶', '成都', '南京', '青島', '長沙', '武漢', '深圳'] y = [260, 45, 69, 800, 290, 360, 450, 120, 50] colors = ['lightgreen', 'pink', 'yellow', 'skyblue', 'cyan', 'silver', 'lightcoral', 'orange', 'violet'] percent = ['11%', '2%', '3%', '33%', '12%', '15%', '18%', '5%', '2%'] chart = sf.plot(sizes = y, label = x, color = colors, value = percent, edgecolor = 'white', linewidth = 2) plt.title(label = '城市銷售額分佈及佔比圖',fontdict = {'family' : 'KaiTi', 'color' : 'k', 'size' : 25}) plt.axis('off') plt.show()
箱形圖是一種用於展現數據的分佈狀況的統計圖,因形狀如箱子而得名。使用Matplotlib模塊中的boxplot()函數能夠繪製箱形圖。
數據
日期 | 成都 | 上海 | 北京 | 重慶 | 南京 |
---|---|---|---|---|---|
1月1日 | 25 | 50 | 52 | 25 | 50 |
1月2日 | 12 | 58 | 56 | 26 | 56 |
1月3日 | 26 | 60 | 100 | 78 | 58 |
1月4日 | 23 | 78 | 125 | 45 | 87 |
1月5日 | 18 | 36 | 108 | 46 | 50 |
1月6日 | 15 | 69 | 100 | 50 | 60 |
1月7日 | 19 | 41 | 85 | 53 | 26 |
1月8日 | 20 | 52 | 85 | 61 | 36 |
1月9日 | 26 | 53 | 87 | 87 | 69 |
1月10日 | 27 | 69 | 86 | 25 | 78 |
1月11日 | 28 | 78 | 45 | 16 | 75 |
1月12日 | 54 | 80 | 78 | 69 | 80 |
1月13日 | 50 | 52 | 73 | 68 | 81 |
1月14日 | 51 | 26 | 62 | 45 | 45 |
1月15日 | 52 | 28 | 65 | 40 | 65 |
1月16日 | 36 | 57 | 90 | 50 | 63 |
1月17日 | 38 | 56 | 96 | 60 | 69 |
1月18日 | 45 | 89 | 94 | 36 | 64 |
1月19日 | 40 | 84 | 25 | 52 | 65 |
1月20日 | 41 | 85 | 36 | 54 | 45 |
1月21日 | 26 | 80 | 68 | 58 | 52 |
1月22日 | 29 | 75 | 78 | 56 | 59 |
1月23日 | 36 | 50 | 70 | 52 | 80 |
1月24日 | 33 | 25 | 52 | 57 | 29 |
1月25日 | 31 | 36 | 51 | 69 | 36 |
1月26日 | 15 | 64 | 58 | 54 | 29 |
1月27日 | 18 | 56 | 68 | 25 | 90 |
1月28日 | 25 | 54 | 78 | 36 | 78 |
1月29日 | 14 | 50 | 90 | 78 | 71 |
1月30日 | 39 | 44 | 95 | 56 | 75 |
1月31日 | 48 | 49 | 84 | 25 | 76 |
import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] plt.rcParams['axes.unicode_minus'] = False data = pd.read_excel('1月銷售統計表.xlsx') x1 = data['成都'] x2 = data['上海'] x3 = data['北京'] x4 = data['重慶'] x5 = data['南京'] x = [x1, x2, x3, x4, x5] labels = ['成都', '上海', '北京', '重慶', '南京'] # 參數vert用於設置箱形圖的方向,True表示縱向展現,False表示橫向展現;參數showmeans用於設置是否顯示均值,True表示顯示均值,False表示不顯示均值。 plt.boxplot(x, vert = True, widths = 0.5, labels = labels, showmeans = True ) plt.title('各地區1月銷售額箱形圖', fontsize = 20) plt.ylabel('銷售額(萬元)') plt.show()
箱形圖中的5條橫線和1個點所表明的含義以下:
玫瑰圖可反映多個維度的數據,它將柱形圖轉化爲餅圖,在圓心角相同的狀況下,以扇面長度展現指標大小。要繪製玫瑰圖,也要用到繪製柱形圖的bar()函數。
import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False # 將風速的分佈設置爲4個區間 index = ['0~0.5', '0.6~2.0', '2.1~4.0', '4.1~6.0'] # 設置了16個方向 columns = ['N', 'NNE', 'NE', 'ENE', 'E', 'ESE', 'SE', 'SSE', 'S', 'SSW', 'SW', 'WSW', 'W', 'WNW', 'NW', 'NNW'] # seed()函數用於產生相同的隨機數 np.random.seed(0) # 建立一個4行16列的DataFrame,其中的數據是30~300範圍內的隨機數,行標籤爲第6行代碼設置的風速分佈區間,列標籤爲第7行代碼設置的方向。 data = pd.DataFrame(np.random.randint(30, 300, (4, 16)), index = index, columns = columns) N = 16 # 生成16個方向的角度值 theta = np.linspace(0, 2 * np.pi, N, endpoint = False) # 用於計算扇面的寬度 width = np.pi / N labels = list(data.columns) plt.figure(figsize = (6, 6)) ax = plt.subplot(1, 1, 1, projection = 'polar') for i in data.index: radius = data.loc[i] # 使用bar()函數繪製玫瑰圖中的16根柱子,也就是扇面,參數bottom用於設置每根柱子底部的位置,這裏設置爲0.0,表示從圓心開始繪製。 ax.bar(theta, radius, width = width, bottom = 0.0, label = i, tick_label = labels) # 設置0°的方向爲「N」,即北方 ax.set_theta_zero_location('N') # 設置按逆時針方向排列各個柱子 ax.set_theta_direction(-1) plt.title('各方向風速頻數玫瑰圖', fontsize = 20) plt.legend(loc = 4, bbox_to_anchor = (1.3, 0.2)) plt.show()