JavaShuo
欄目
標籤
Reinforcement Learning for Relation Classification from Noisy Data
時間 2020-12-27
標籤
關係分類
简体版
原文
原文鏈接
主要貢獻 提出一個新的關係分類模型,它有實體選擇器與關係分類器構成。它能夠在句子級別提取關係。 將實體選擇問題轉換成強化學習問題,這使得不需要實體選擇的標籤,而只需要關係分類器的弱監督的回饋就能進行實體選擇。 摘要 現在的關係分類方法都是依賴拍距離監督假設(distance supervision assume)的,它假設一系列提到一對實體的句子,都是在描述這對實體的一種關係。類似於這種思想的方法
>>阅读原文<<
相關文章
1.
Reinforcement Learning for Relation Classification from Noisy Data閱讀筆記
2.
Learning from Uncertainty for Big Data
3.
Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification (2019 AAAI)
4.
論文筆記:Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification
5.
Learning from Noisy Anchors的思考
6.
Noise2Void - Learning Denoising from Single Noisy Images
7.
Open Relation Extraction- Relational Knowledge Transfer from Supervised Data to Unsupervised Data
8.
(轉) Deep Reinforcement Learning: Pong from Pixels
9.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
10.
《Distantly Supervised NER with Partial Annotation Learning and Reinforcement Learning》
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
Java Agent入門實戰(三)-JVM Attach原理與使用
•
JDK13 GA發佈:5大特性解讀
相關標籤/搜索
noisy
relation
classification
reinforcement
learning
data
DATA+++
Deep Learning
Meta-learning
Learning Perl
MyBatis教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
CVPR 2020 論文大盤點-光流篇
2.
Photoshop教程_ps中怎麼載入圖案?PS圖案如何導入?
3.
org.pentaho.di.core.exception.KettleDatabaseException:Error occurred while trying to connect to the
4.
SonarQube Scanner execution execution Error --- Failed to upload report - 500: An error has occurred
5.
idea 導入源碼包
6.
python學習 day2——基礎學習
7.
3D將是頁遊市場新賽道?
8.
osg--交互
9.
OSG-交互
10.
Idea、spring boot 圖片(pgn顯示、jpg不顯示)解決方案
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Reinforcement Learning for Relation Classification from Noisy Data閱讀筆記
2.
Learning from Uncertainty for Big Data
3.
Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification (2019 AAAI)
4.
論文筆記:Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification
5.
Learning from Noisy Anchors的思考
6.
Noise2Void - Learning Denoising from Single Noisy Images
7.
Open Relation Extraction- Relational Knowledge Transfer from Supervised Data to Unsupervised Data
8.
(轉) Deep Reinforcement Learning: Pong from Pixels
9.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
10.
《Distantly Supervised NER with Partial Annotation Learning and Reinforcement Learning》
>>更多相關文章<<