本系列文章是對 metalkit.org 上面MetalKit內容的全面翻譯和學習.git
MetalKit系統文章目錄github
今天咱們從Peter Shirley’s mini book導入ray tracer射線追蹤器
到Swift
playground中.我將不會解釋什麼是Ray Tracing射線追蹤及它是怎麼工做的,我會請你本身先去讀一讀這本書由於它對Kindle訂閱者是免費的.若是你不是訂閱者,只須要像我同樣購買這本書就好了.若是你對這個話題感興趣,那花費$2.99是絕對值得的.swift
咱們要作的第一件事就是建立一個數據結構體來保存像素信息.在playground中,在Sources
文件夾下建立一個新文件命名爲pixel.swift.下一步,編寫Pixel結構體.它只是一個簡單結構體,各用一個變量來保存 RGBA 通道.咱們初始化alpha
通道爲255,這意味着在[0~255]
範圍的徹底不透明:數組
public struct Pixel {
var r: UInt8
var g: UInt8
var b: UInt8
var a: UInt8
init(red: UInt8, green: UInt8, blue: UInt8) {
r = red
g = green
b = blue
a = 255
}
}
複製代碼
下一步,咱們須要建立一個數組來保存屏幕上的像素.爲了計算每一個像素的顏色,咱們只須要給全部像素的Red
設置爲0,同時Green
則從屏幕左下角的0(沒有任何綠色)漸變到屏幕右上角的255(純綠色).一樣,Blue
顏色從屏幕頂部的0漸變到屏幕底部的255.數據結構
public func makePixelSet(width: Int, _ height: Int) -> ([Pixel], Int, Int) {
var pixel = Pixel(red: 0, green: 0, blue: 0)
var pixels = [Pixel](count: width * height, repeatedValue: pixel)
for i in 0..<width {
for j in 0..<height {
pixel = Pixel(red: 0, green: UInt8(Double(i * 255 / width)), blue: UInt8(Double(j * 255 / height)))
pixels[i + j * width] = pixel
}
}
return (pixels, width, height)
}
複製代碼
最後,咱們須要一個方法來從像素建立出一個可繪製的圖片.Core Image框架提供了CGImageCreate() 方法,它只須要幾個參數就能夠渲染圖片:框架
public func imageFromPixels(pixels: ([Pixel], width: Int, height: Int)) -> CIImage {
let bitsPerComponent = 8
let bitsPerPixel = 32
let rgbColorSpace = CGColorSpaceCreateDeviceRGB()
let bitmapInfo = CGBitmapInfo(rawValue: CGImageAlphaInfo.PremultipliedLast.rawValue) // alpha is last
let providerRef = CGDataProviderCreateWithCFData(NSData(bytes: pixels.0, length: pixels.0.count * sizeof(Pixel)))
let image = CGImageCreate(pixels.1, pixels.2, bitsPerComponent, bitsPerPixel, pixels.1 * sizeof(Pixel), rgbColorSpace, bitmapInfo, providerRef, nil, true, CGColorRenderingIntent.RenderingIntentDefault)
return CIImage(CGImage: image!)
}
複製代碼
下一步,在playground主頁中用給定的width
和height
建立一個窗口像素的集合,並用這個集合來建立渲染出的圖片:ide
let width = 800
let height = 400
var pixelSet = makePixelSet(width, height)
var image = imageFromPixels(pixelSet)
image
複製代碼
你應該能看到下面的圖面:工具
OK,你可能會好奇,可是ray tracing射線追蹤
在哪裏呢?咱們稍後再解釋這個.在Sources
文件夾下面,讓咱們建立一個便利的類命名爲vec3.swift,在裏面放一些數學
工具方法:post
struct vec3 {
var x = 0.0
var y = 0.0
var z = 0.0
}
func * (left: Double, right: vec3) -> vec3 {
return vec3(x: left * right.x, y: left * right.y, z: left * right.z)
}
func + (left: vec3, right: vec3) -> vec3 {
return vec3(x: left.x + right.x, y: left.y + right.y, z: left.z + right.z)
}
func - (left: vec3, right: vec3) -> vec3 {
return vec3(x: left.x - right.x, y: left.y - right.y, z: left.z - right.z)
}
func dot (left: vec3, _ right: vec3) -> Double {
return left.x * right.x + left.y * right.y + left.z * right.z
}
func unit_vector(v: vec3) -> vec3 {
let length : Double = sqrt(dot(v, v))
return vec3(x: v.x/length, y: v.y/length, z: v.z/length)
}
複製代碼
下一步,咱們須要建立一個ray射線結構體.它擁有一個origin原點
成員,一個direction方向
,還有一個方法能夠計算任意給定參數的ray tracing
方程式:學習
struct ray {
var origin: vec3
var direction: vec3
func point_at_parameter(t: Double) -> vec3 {
return origin + t * direction
}
}
複製代碼
而後咱們須要計算顏色,基於ray射線
是否接觸到咱們在屏幕中間建立的sphere球體
:
func color(r: ray) -> vec3 {
let minusZ = vec3(x: 0, y: 0, z: -1.0)
var t = hit_sphere(minusZ, 0.5, r)
if t > 0.0 {
let norm = unit_vector(r.point_at_parameter(t) - minusZ)
return 0.5 * vec3(x: norm.x + 1.0, y: norm.y + 1.0, z: norm.z + 1.0)
}
let unit_direction = unit_vector(r.direction)
t = 0.5 * (unit_direction.y + 1.0)
return (1.0 - t) * vec3(x: 1.0, y: 1.0, z: 1.0) + t * vec3(x: 0.5, y: 0.7, z: 1.0)
}
複製代碼
你注意到咱們用到了另外一個方法,叫hit_sphere(),來肯定咱們的射線是撞到了球體,或者沒有接觸球體:
func hit_sphere(center: vec3, _ radius: Double, _ r: ray) -> Double {
let oc = r.origin - center
let a = dot(r.direction, r.direction)
let b = 2.0 * dot(oc, r.direction)
let c = dot(oc, oc) - radius * radius
let discriminant = b * b - 4 * a * c
if discriminant < 0 {
return -1.0
} else {
return (-b - sqrt(discriminant)) / (2.0 * a)
}
}
複製代碼
回到pixel.swift文件,更改makePixelSet(:),使其在每一個像素被加入集合前,給每一個像素建立一個ray射線
並計算它的color顏色
:
public func makePixelSet(width: Int, _ height: Int) -> ([Pixel], Int, Int) {
var pixel = Pixel(red: 0, green: 0, blue: 0)
var pixels = [Pixel](count: width * height, repeatedValue: pixel)
let lower_left_corner = vec3(x: -2.0, y: 1.0, z: -1.0)
let horizontal = vec3(x: 4.0, y: 0, z: 0)
let vertical = vec3(x: 0, y: -2.0, z: 0)
let origin = vec3()
for i in 0..<width {
for j in 0..<height {
let u = Double(i) / Double(width)
let v = Double(j) / Double(height)
let r = ray(origin: origin, direction: lower_left_corner + u * horizontal + v * vertical)
let col = color(r)
pixel = Pixel(red: UInt8(col.x * 255), green: UInt8(col.y * 255), blue: UInt8(col.z * 255))
pixels[i + j * width] = pixel
}
}
return (pixels, width, height)
}
複製代碼
在playground的主頁面,看看產生的新圖像:
敬請關注本文的第2部分,咱們將會計算燈光和陰影,產生更真實的圖像渲染.
源代碼source code 已發佈在Github上.
下次見!