這一節咱們總結FM三兄弟FNN/PNN/DeepFM,由遠及近,從最初把FM獲得的隱向量和權重做爲神經網絡輸入的FNN,到把向量內/外積從預訓練直接遷移到神經網絡中的PNN,再到參考wide&Deep框架把人工特徵交互替換成FM的DeepFM,咱們終於來到了2017年。。。html
如下代碼針對Dense輸入感受更容易理解模型結構,針對spare輸入的代碼和完整代碼 👇
https://github.com/DSXiangLi/CTRpython
FNN算是把FM和深度學習最先的嘗試之一。能夠從兩個角度去理解FNN:從以前Embedding+MLP的角看,FNN使用FM預訓練的隱向量做爲第一層能夠加快模型收斂。從FM的角度來看,FM侷限於二階特徵交互信息,想要學到更高階的特徵交互,在FM基礎上疊加全聯接層就是FNN。git
補充一下Embedding直接拼接做爲輸入爲啥收斂的這麼慢,一個是參數太多一層Embedding就要N*K個參數再加上後面的全聯接層,另外就是每次gradient descent只會更新和稀疏離散輸入裏面非0特徵對應的Embedding。github
先看下FM的公式,FNN提取了如下的\(W,V\)來做爲神經網絡第一層的輸入網絡
FNN的模型結構比較簡單。輸入特徵N維, FM隱向量維度是Kapp
模型結構以下框架
FNN幾個能想到的問題有ide
這裏用了tf.contrib.framework.load_variable去讀了以前FM模型的embedding和weight。感受也能夠直接把FM的variable寫出來,而後FNN裏用params再傳進去也是能夠的。post
@tf_estimator_model def model_fn(features, labels, mode, params): feature_columns= build_features() input = tf.feature_column.input_layer(features, feature_columns) with tf.variable_scope('init_fm_embedding'): # method1: load from checkpoint directly embeddings = tf.Variable( tf.contrib.framework.load_variable( './checkpoint/FM', 'fm_interaction/v' ) ) weight = tf.Variable( tf.contrib.framework.load_variable( './checkpoint/FM', 'linear/w' ) ) dense = tf.add(tf.matmul(input, embeddings), tf.matmul(input, weight)) add_layer_summary('input', dense) with tf.variable_scope( 'Dense' ): for i, unit in enumerate( params['hidden_units'] ): dense = tf.layers.dense( dense, units=unit, activation='relu', name='dense{}'.format( i ) ) dense = tf.layers.batch_normalization( dense, center=True, scale=True, trainable=True, training=(mode == tf.estimator.ModeKeys.TRAIN) ) dense = tf.layers.dropout( dense, rate=params['dropout_rate'], training=(mode == tf.estimator.ModeKeys.TRAIN) ) add_layer_summary( dense.name, dense ) with tf.variable_scope('output'): y = tf.layers.dense(dense, units= 1, name = 'output') tf.summary.histogram(y.name, y) return y
PNN的目標在paper最開始就點明瞭以比MLPs更有效的方式來挖掘信息。在前一篇咱們就說過MLP理論上能夠提煉任意信息,但也由於它太過general致使最終模型能學到模式受數據量的限制會很是有限,PNN借鑑了FM的思路來幫助MLP學到更多特徵交互信息。學習
PNN給出了三種挖掘特徵交互信息的方式IPNN採用向量內積,OPNN採用向量外積,concat在一塊兒就是PNN。模型結構以下
以後跟全鏈接層。能夠發現去掉全聯接層把權重都設爲1,把線性部分對接到最初的離散輸入那IPNN就退化成了FM。
以上IPNN和OPNN的計算都有維度太高,計算複雜度太高的問題,做者進行了相應的優化。
PNN的幾個可能能夠吐槽的地方
@tf_estimator_model def model_fn(features, labels, mode, params): dense_feature= build_features() dense = tf.feature_column.input_layer(features, dense_feature) # lz linear concat of embedding feature_size = len( dense_feature ) embedding_size = dense_feature[0].variable_shape.as_list()[-1] embedding_matrix = tf.reshape( dense, [-1, feature_size, embedding_size] ) # batch * feature_size *emb_size with tf.variable_scope('IPNN'): # use matrix multiplication to perform inner product of embedding inner_product = tf.matmul(embedding_matrix, tf.transpose(embedding_matrix, perm=[0,2,1])) # batch * feature_size * feature_size inner_product = tf.reshape(inner_product, [-1, feature_size * feature_size ])# batch * (feature_size * feature_size) add_layer_summary(inner_product.name, inner_product) with tf.variable_scope('OPNN'): outer_collection = [] for i in range(feature_size): for j in range(i+1, feature_size): vi = tf.gather(embedding_matrix, indices = i, axis=1, batch_dims=0, name = 'vi') # batch * embedding_size vj = tf.gather(embedding_matrix, indices = j, axis=1, batch_dims= 0, name='vj') # batch * embedding_size outer_collection.append(tf.reshape(tf.einsum('ai,aj->aij',vi,vj), [-1, embedding_size * embedding_size])) # batch * (emb * emb) outer_product = tf.concat(outer_collection, axis=1) add_layer_summary( outer_product.name, outer_product ) with tf.variable_scope('fc1'): if params['model_type'] == 'IPNN': dense = tf.concat([dense, inner_product], axis=1) elif params['model_type'] == 'OPNN': dense = tf.concat([dense, outer_product], axis=1) elif params['model_type'] == 'PNN': dense = tf.concat([dense, inner_product, outer_product], axis=1) add_layer_summary( dense.name, dense ) with tf.variable_scope('Dense'): for i, unit in enumerate( params['hidden_units'] ): dense = tf.layers.dense( dense, units=unit, activation='relu', name='dense{}'.format( i ) ) dense = tf.layers.batch_normalization( dense, center=True, scale=True, trainable=True, training=(mode == tf.estimator.ModeKeys.TRAIN) ) dense = tf.layers.dropout( dense, rate=params['dropout_rate'], training=(mode == tf.estimator.ModeKeys.TRAIN) ) add_layer_summary( dense.name, dense) with tf.variable_scope('output'): y = tf.layers.dense(dense, units=1, name = 'output') add_layer_summary( 'output', y ) return y
DeepFM是對Wide&Deep的Wide側進行了改進。以前的Wide是一個LR,輸入是離散特徵和交互特徵,交互特徵會依賴人工特徵工程來作cross。DeepFM則是用FM來代替了交互特徵的部分,和Wide&Deep相比再也不依賴特徵工程,同時cross-column的剔除能夠下降輸入的維度。
和PNN/FNN相比,DeepFM能更多提取到到低階特徵。並且上述這些模型間直接並不互斥,好比把DeepFM的FMLayer共享到Deep部分其實就是IPNN。
Wide部分就是一個FM,輸入是N個one-hot的離散特徵,每一個離散特徵對應到等長的低維(k)embedding上,最終輸出的就是以前FM模型的output。而且由於這裏不須要像IPNN同樣輸出隱向量,所以可使用FM下降複雜度的trick。
Deep部分和Wide部分共享N*K的Embedding輸入層,而後跟兩個全聯接層
Deep和Wide聯合訓練,模型最終的輸出是FM部分和Deep部分權重爲1的簡單加和。聯合訓練共享Embedding也保證了二階特徵交互學到的Embedding會和高階信息學到的Embedding的一致性。
@tf_estimator_model def model_fn(features, labels, mode, params): dense_feature, sparse_feature = build_features() dense = tf.feature_column.input_layer(features, dense_feature) sparse = tf.feature_column.input_layer(features, sparse_feature) with tf.variable_scope('FM_component'): with tf.variable_scope( 'Linear' ): linear_output = tf.layers.dense(sparse, units=1) add_layer_summary( 'linear_output', linear_output ) with tf.variable_scope('second_order'): # reshape (batch_size, n_feature * emb_size) -> (batch_size, n_feature, emb_size) emb_size = dense_feature[0].variable_shape.as_list()[0] # all feature has same emb dimension embedding_matrix = tf.reshape(dense, (-1, len(dense_feature), emb_size)) add_layer_summary( 'embedding_matrix', embedding_matrix ) # Compared to FM embedding here is flatten(x * v) not v sum_square = tf.pow( tf.reduce_sum( embedding_matrix, axis=1 ), 2 ) square_sum = tf.reduce_sum( tf.pow(embedding_matrix,2), axis=1 ) fm_output = tf.reduce_sum(tf.subtract( sum_square, square_sum) * 0.5, axis=1, keepdims=True) add_layer_summary('fm_output', fm_output) with tf.variable_scope('Deep_component'): for i, unit in enumerate(params['hidden_units']): dense = tf.layers.dense(dense, units = unit, activation ='relu', name = 'dense{}'.format(i)) dense = tf.layers.batch_normalization(dense, center=True, scale = True, trainable=True, training=(mode ==tf.estimator.ModeKeys.TRAIN)) dense = tf.layers.dropout( dense, rate=params['dropout_rate'], training = (mode==tf.estimator.ModeKeys.TRAIN)) add_layer_summary( dense.name, dense ) with tf.variable_scope('output'): y = dense + fm_output + linear_output add_layer_summary( 'output', y ) return y
https://github.com/DSXiangLi/CTR
CTR學習筆記&代碼實現1-深度學習的前奏LR->FFM
CTR學習筆記&代碼實現2-深度ctr模型 MLP->Wide&Deep