R語言經常使用的矩陣操做

R語言是一門很是方便的數據分析語言,它內置了許多處理矩陣的方法。下面列出一些經常使用的矩陣操做方法示例。spa

矩陣的生成3d

> mat <- matrix(1:16, ncol = 4, nrow = 4, byrow=TRUE, dimnames=list(c(paste("x", 1:4, sep = ".")), c(paste("y", 1:4, sep = "."))))
> mat
    y.1 y.2 y.3 y.4
x.1   1   2   3   4
x.2   5   6   7   8
x.3   9  10  11  12
x.4  13  14  15  16
# 矩陣的行列名還可使用rownames或者colnames進行修改 > rownames(mat) <- paste("row", 1:4, sep=".") > colnames(mat) <- paste("col", 1:4, sep=".")
> mat col.1 col.2 col.3 col.4 row.1 1 2 3 4 row.2 5 6 7 8 row.3 9 10 11 12 row.4 13 14 15 16

矩陣的維度code

# 表示這是一個4行4列的矩陣
> dim(mat) [1] 4 4

矩陣的加減blog

> mat.2 <- matrix(51:66, nrow = 4)
> mat.2
     [,1] [,2] [,3] [,4]
[1,]   51   55   59   63
[2,]   52   56   60   64
[3,]   53   57   61   65
[4,]   54   58   62   66
> mat.plus <- mat + mat.2
> mat.plus
      col.1 col.2 col.3 col.4
row.1    52    57    62    67
row.2    57    62    67    72
row.3    62    67    72    77
row.4    67    72    77    82
> mat.minus <- mat - mat.2
> mat.minus
      col.1 col.2 col.3 col.4
row.1   -50   -53   -56   -59
row.2   -47   -50   -53   -56
row.3   -44   -47   -50   -53
row.4   -41   -44   -47   -50

矩陣的轉置數據分析

> t(mat)
      row.1 row.2 row.3 row.4
col.1     1     5     9    13
col.2     2     6    10    14
col.3     3     7    11    15
col.4     4     8    12    16

矩陣相乘it

# 若A矩陣的維度爲m*n,那麼B矩陣的維度應爲n*p
# 生成的結果矩陣的維度爲m*p
> mat.3 <- matrix(1:8, nrow = 4) > mat.3 [,1] [,2] [1,] 1 5 [2,] 2 6 [3,] 3 7 [4,] 4 8 > mat.mcl <- mat %*% mat.3 > mat.mcl [,1] [,2] row.1 30 70 row.2 70 174 row.3 110 278 row.4 150 382

返回矩陣的對角io

> diag(mat)
[1]  1  6 11 16

生成上三角或下三角矩陣ast

# 生成上三角矩陣,注意這裏的diag參數若是爲TRUE,
# 表示把矩陣對角也包括進來。設置爲FALSE就是不包括。
> mat[!upper.tri(mat, diag = TRUE)] <- 0
> mat
      col.1 col.2 col.3 col.4
row.1     1     2     3     4
row.2     0     6     7     8
row.3     0     0    11    12
row.4     0     0     0    16
# 生成下三角矩陣
> mat[!lower.tri(mat, diag = TRUE)] <- 0
> mat
      col.1 col.2 col.3 col.4
row.1     1     0     0     0
row.2     5     6     0     0
row.3     9    10    11     0
row.4    13    14    15    16

求解逆矩陣class

> solve(mat)
            row.1         row.2       row.3  row.4
col.1  1.00000000  6.832142e-17  0.00000000 0.0000
col.2 -0.83333333  1.666667e-01  0.00000000 0.0000
col.3 -0.06060606 -1.515152e-01  0.09090909 0.0000
col.4 -0.02651515 -3.787879e-03 -0.08522727 0.0625

求行列式的值方法

> det(mat)
[1] 4.733165e-30

矩陣的特徵值和特徵向量

> mat.e <- eigen(mat)
> mat.e
eigen() decomposition
$values
[1]  3.620937e+01 -2.209373e+00 -3.188632e-15 -1.348401e-16

$vectors
           [,1]       [,2]       [,3]        [,4]
[1,] -0.1511543  0.7270500  0.5037002 -0.06456091
[2,] -0.3492373  0.2832088 -0.8319577 -0.31932112
[3,] -0.5473203 -0.1606324  0.1528148  0.83232496
[4,] -0.7454033 -0.6044736  0.1754427 -0.44844294
# 可使用mat.e$values和mat.e$vectors取出結果

奇異值分解

> svd(mat)
$d
[1] 3.862266e+01 2.071323e+00 7.609772e-16 3.860638e-16

$u
           [,1]        [,2]       [,3]        [,4]
[1,] -0.1347221 -0.82574206  0.3812474 -0.39325613
[2,] -0.3407577 -0.42881720 -0.2152141  0.80850658
[3,] -0.5467933 -0.03189234 -0.7133141 -0.43724476
[4,] -0.7528288  0.36503251  0.5472808  0.02199431

$v
           [,1]       [,2]       [,3]       [,4]
[1,] -0.4284124  0.7186535  0.2825595 -0.4692122
[2,] -0.4743725  0.2738078 -0.7264762  0.4150089
[3,] -0.5203326 -0.1710379  0.6052738  0.5776189
[4,] -0.5662928 -0.6158835 -0.1613571 -0.5234156

QR分解

> qr(mat)
$qr
            col.1       col.2         col.3         col.4
row.1 -16.6132477 -18.2986497 -1.998405e+01 -2.166945e+01
row.2   0.3009646  -1.0767638 -2.153528e+00 -3.230291e+00
row.3   0.5417363  -0.3456506  1.350645e-15  3.139336e-15
row.4   0.7825080  -0.9120325  1.643990e-01  7.300782e-17

$rank
[1] 2

$qraux
[1] 1.060193e+00 1.220731e+00 1.986394e+00 7.300782e-17

$pivot
[1] 1 2 3 4

attr(,"class")
[1] "qr"
> qr.Q(qr(mat))
            [,1]        [,2]       [,3]       [,4]
[1,] -0.06019293 -0.83449195 -0.3906679 -0.3838992
[2,] -0.30096463 -0.45762462  0.2347489  0.8030523
[3,] -0.54173634 -0.08075729  0.7025058 -0.4544068
[4,] -0.78250805  0.29611005 -0.5465868  0.0352538
> qr.R(qr(mat))
          col.1      col.2         col.3         col.4
row.1 -16.61325 -18.298650 -1.998405e+01 -2.166945e+01
row.2   0.00000  -1.076764 -2.153528e+00 -3.230291e+00
row.3   0.00000   0.000000  1.350645e-15  3.139336e-15
row.4   0.00000   0.000000  0.000000e+00  7.300782e-17
相關文章
相關標籤/搜索