按信道信號特徵 | 按傳輸媒介 | 按傳輸方式 | 按通訊業務分類 | 按工做波段分類 | 按複用方式分類 |
---|---|---|---|---|---|
模擬通訊、數字通訊 | 有線通訊、無線通訊 | 基帶傳輸、帶通傳輸 | 電話、數據、圖像通訊等 | 長波、中波、短波、微波、紅外以及激光通訊等 | 頻分、時分、碼分複用 |
消息傳遞的方向和時間關係 | 碼元傳輸方式 |
---|---|
單工、半雙工、全雙工 | 並行傳輸、串行傳輸 |
\(I=log_a\frac{1}{P(x)}=-log_aP(x)\)app
\(H(x)=P(x_1)[-log_2P(x_1)]+P(x_2)[-log_2P(x_2)]+...+P(x_M)[-log_2P(x_M)]\)函數
\(H(x)=-\sum_{i=1}^MP(x_i)log_2P(x_i)\)ui
\(I_總=M×H\)編碼
\(-\int_{-\infty}^{\infty}f(x)log_af(x)\)加密
\(\eta=\frac{R_B}{B}(Baud/Hz)\)spa
\(\eta_b=\frac{R_b}{B}(b/(s*Hz)) R_b爲信息傳輸速率,比特率\)對象
\(R_B=\frac{1}{T_B}R_B爲碼元傳輸速率,波特率\)ci
\(R_b=R_Blog_2M\)同步
週期信號 | 非週期信號 | 能量信號 | 功率信號 |
---|---|---|---|
週期具備重複性 | 週期不具備重複性 | 能量有限,平均功率爲零 | 平均功率有限,能量無窮大 |
\(e^{j\theta}=cos\theta+jsin\theta\)it
\(C_n=C(nf_0)=\frac{1}{T_0}\int_{-\frac{T_0}{2}}^{\frac{t_0}{2}}s(t)e^{-j2\pi nf_0t}\)
\(s(t)=\sum_{n=-\infty}^{ \infty}C_ne^{\frac{j2\pi nt}{T_0}}\)
\(C_{-n}=\frac{1}{T_0}\int_{-\frac{T_0}{2}}^{\frac{t_0}{2}}s(t)e^{+j2\pi nf_0t}=[\frac{1}{T_0}\int_{-\frac{T_0}{2}}^{\frac{t_0}{2}}s(t)e^{-j2\pi nf_0t}]^*=C_n^*\)
\(s(t)=C_0+\sum_{n=1}^\infty[(C_n+C_n^*)cos(\frac{2\pi nt}{T_0})+j(C_n-C_n^*)sin(\frac{2\pi nt}{T_0})]\)
\(C_n=\frac{1}{2}(a_n-jb_n),C_{-n}=C_n^*=\frac{1}{2}(a_n+jb_n),n\ge 1\)
\(s(t)=C_0+\sum_{n=1}^{\infty}[\sqrt{a_n^2+b_n^2}cos(\frac{2\pi nt}{T_0}+\theta_n)]\)
\(\theta_n=-arctan\frac{b_n}{a_n}\)
\(Sa(t)=\frac{sint}{t}=sinc(t)\)
\(s(f)=\int_{-\infty}^{\infty}s(t)e^{-j2\pi ft}dt\)
\(\int_{-\infty}^{\infty}s(t)e^{-j2\pi ft}dt=[\int_{-\infty}^{\infty}s(t)e^{+j2\pi ft}dt]^*\)
\(s(f)=[s(-f)]^*\)
\(\int_{-\infty}^{\infty}\frac{k}{\pi}Sa(kt)dt=1\)
\(\delta(t)=\lim_{k\rightarrow -\infty}\frac{k}{\pi}Sa(kt)\)
\(△(f)=\int_{-\infty}^{\infty}\delta(t)e^{-j2\pi ft}dt=1*\int_{-\infty}^{\infty}\delta(t)dt=1\)
\(e^{-i2\pi ft}|_{t=0}=1\)
\(\int_{-\infty}^{\infty}f(t)\delta(t-t_0)dt=f(t_0)\int_{-\infty}^{\infty}\delta(t-t_0)dt=f(t_0)\)
\(f(t_0)=\int_{-\infty}^{\infty}f(t)\delta(t-t_0)dt\)
\(S(f)=\lim_{\tau ->\infty}\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}}cos2\pi f_0te^{-j2\pi ft}dt\)
\(S(f)=\lim_{\tau ->\infty}\frac{\tau}{2}\{\frac{sin[\pi (f-f_0)\tau]}{\pi (f-f_0)\tau}+\frac{sin[\pi (f+f_0)\tau]}{\pi (f+f_0)\tau}\}\)
\(S(f)=\lim_{\tau ->\infty}\frac{\tau}{2}\{Sa[\pi \tau(f-f_0)]+Sa[\pi \tau(f+f_0)]\}\)
\(S(f)=\frac{1}{2}[\delta(f-f_0)+\delta(f+f_0)]\)
序號 | \(f(t)\) | \(F(w)\) | 序號 | \(f(t)\) | \(F(w)\) |
---|---|---|---|---|---|
1 | \(\delta(t)\) | 1 | 8 | \(rect(t/\tau)\) | \(\tau Sa(w\tau /2)\) |
2 | 1 | \(2\pi\delta(w)\) | 9 | \(\frac{W}{2\pi}Sa(\frac{Wt}{2})\) | \(rect(\frac{w}{W})\) |
3 | \(e^{jw_0t}\) | \(2\pi\delta(w-w_0)\) | 10 | \(cos(w_0t)\) | \(\pi[\delta(w-w_0)+\delta(w+w_0)]\) |
4 | \(sgn(t)\) | \(\frac{2}{jw}\) | 11 | \(sin(w_0t)\) | \(\frac{\pi}{j}[\delta(w-w_0)-\delta(w+w_0)]\) |
5 | \(j\frac{1}{\pi t}\) | \(sgn(w)\) | 12 | \(e^{-\alpha|t|}\) | \(\frac{2\alpha}{\alpha^2+w^2}\) |
6 | \(u(t)\) | \(\pi\delta(w)+\frac{1}{jw}\) | 13 | \(u(t)e^{-\alpha t}\) | \(\frac{1}{\alpha +jw}\) |
7 | \(\delta_T(t)=\sum_{n=-\infty}^{\infty}\delta(t-nT)\) | \(\frac{2\pi}{T}\sum_{n=-\infty}^{\infty}\delta(w-n*\frac{2\pi}{T})\) | 14 | \(u(t)te^{-\alpha t}\) | \(\frac{1}{(\alpha +jw)^2}\) |
\(E=\int_{-\infty}^{\infty}s^2(t)dt\)
\(E=\int_{-\infty}^{\infty}|S(f)|^2df\)
\(E=\int_{-\infty}^{\infty}G(f)df\)
\(G(f)df爲能量譜密度\)
\(E=\int_{-T/2}^{T/2}s_{T}^{2}(t)dt=\int_{-\infty}^{\infty}|S_T(f)|^2df\)
\(P(f)=\lim_{T->\infty}\frac{1}{T}\int_{-\infty}^{\infty}|S_T(f)|^2\)
\(P=\lim_{T->\infty}\frac{1}{T}\int_{-\infty}^{\infty}|S_T(f)|^2df=\int_{-\infty}^{\infty}P(f)df\)
\(P=\frac{1}{T_0}\int_{-T_0/2}^{T_0/2}s^2(t)dt=\sum_{n=-\infty}^{\infty}|C_n|^2\)
\(P(f)=\sum_{n=-\infty}^{\infty}|C(f)|^2\delta(f-nf_0)\)
\(E[\xi (t)]\inf_{-\infty}^{\infty}xf_1(x,t)dx\)
\(D[\xi(t)]=E\{[\xi(t)-a(t)]^2\}\)
\(D[\xi(t)]=E\{[\xi(t)-a(t)]^2\}=E[\xi^2(t)]-a^2(t)=\int_{-\infty}^{\infty}x^2f_1(x,t)dx-[a(t)]^2\)
\(B(t_1,t_2)=E\{[\xi(t_1)-a(t_1)][\xi(t_2)-a(t_2)]\}=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}[x_1-a(t_1)][x_2-a(t_2)]f_2(x_1,x_2;t_1,t_2)dx_1dx_2\)
\(R(t_1,t_2)=E[\xi(t_1)\xi(t_2)]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}x_1x_2f_2(x_1,x_2;t_1,t_2)dx_1dx_2\)
\(B(t_1,t_2)=R(t_1,t_2)-a(t_1)a(t_2)\)
1.均值與t無關,爲常數2.自相關函數只與時間間隔\(\tau=t_2-t_1\)有關
\(\begin{cases} \overline a=\overline{x(t)}=\lim_{T->\infty}\frac{1}{T}\int_{-T/2}^{T/2}x(t)dt \\ \overline {R(\tau)}=\overline{x(t)x(t+\tau)}=\lim_{T->\infty}\frac{1}{T}\int_{-T/2}^{T/2}x(t)x(t+\tau)dt \end{cases}\)
\(\begin{cases} a=\overline a \\ R(\tau)=\overline {R(\tau)} \end{cases}\)
\(f(x)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-a)^2}{2\sigma^2})\)
\(F(x)=P(\xi\le x)=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{(z-a)^2}{2\sigma^2}]dz\)
\(令t=(z-a)/\sqrt2\sigma,dz=\sqrt2\sigma dt\)
\(F(x)=\frac{1}{2}*\frac{2}{\sqrt\pi}\int_{-\infty}^{(x-a)/\sqrt2\sigma}e^{-t^2}dt=\frac{1}{2}+\frac{1}{2}erf(\frac{x-a}{\sqrt2\sigma})\)
\(erf(x)=\frac{2}{\sqrt\pi}\int_{0}^{x}e^{-t^2}dt\)
\(F(x)=1-\frac{1}{2}erfc(\frac{x-a}{\sqrt2\sigma})\)
\(erfc(x)=1-erf(x)=\frac{2}{\sqrt\pi}\int_{x}^{\infty}e^{-t^2}dt\)
\(d^2=r^2=(h+r)^2\)
\(d=\sqrt{h^2+2rh}\approx\sqrt{2rh}\)
\(D^2=(2d)^2=8rh\)
\(h=\frac{D^2}{8r}\approx\frac{D^2}{50}\)
\(V=\sqrt{4kTRB}\)
\(k=1.38*10^{-23}(J/K),爲玻爾茲曼常數;T爲熱力學溫度(K);R爲電阻;B爲帶寬(Hz)\)
\(C_t=Blog_2(1+\frac{S}{N})(b/s)\)
\(N=n_0B;n_0爲單邊功率譜密度\)
P83例題
$ A_{AM}=[A_0+m(t)]=A_0cosw_ct+m(t)cosw_ct$
\(s_{DSB}(t)=m(t)cosW_ct\)
\(S_{DSB}(w)=\frac{1}{2}[M(w+w_c)+M(w-w_c)]\)
AM信號是帶有載波份量的雙邊帶信號,帶寬是基帶信號帶寬的兩倍
\(B_{AM}=2f_H\)
\(S_m(t)已調信號,n(t)信道加性高斯白噪聲\)
\(經帶通濾波器到解調器輸入端s_m(t),n_i(t)\)
\(輸出有用信號m_o(t),噪聲爲n_o(t)\)
$n_i(t)=n_c(t)cosw_0t-n_ssinw_0t 或
n_i(t)=V(t)cos[w_0t+\theta]
$
\(N_i=n_0B\)
\(\frac{S_o}{N_o}=\frac{解調器輸出有用信號的平均功率}{解調器輸出噪聲的平均功率}=\frac{\overline{m_o^2(t)}}{\overline{n_o^2(t)}}\)
\(\frac{S_i}{N_i}=\frac{解調器輸入已調信號的平均功率}{解調器輸入噪聲的平均功率}=\frac{\overline{s_m^2(t)}}{\overline{n_i^2(t)}}\)
\(G=\frac{S_o/N_o}{S_i/N_i}\)
\(B_{2ASK}=2f_B\)
\(相干誤碼率:P_e=\frac{1}{\sqrt{\pi r}}e^{-r/4} 或P_e=\frac{1}{2}erfc\frac{\sqrt r}{2}\)
\(非相干誤碼率:P_e=\frac{1}{2}e^{-r/4}\)
\(B_{2FSK}=|f_2-f_1|+2f_B\)
\(相干誤碼率:P_e=\frac{1}{\sqrt{2\pi r}}e^{-r/2} 或P_e=\frac{1}{2}erfc\sqrt\frac{r}{2}\)
\(非相干誤碼率:P_e=\frac{1}{2}e^{-r/2}\)
\(B_{2PSK}=2f_B\)
\(相干誤碼率:P_e=\frac{1}{2\sqrt{\pi r}}e^{-r} 或P_e=\frac{1}{2}erfc\sqrt r\)
\(B_{2DPSK}=2f_B\)
\(相干誤碼率:P_e=\frac{1}{\sqrt{\pi r}}e^{-r} 或P_e=erfc\sqrt r\)
\(非相干誤碼率:P_e=\frac{1}{2}e^{-r}\)
\(信噪比r=\frac{S}{N}=\frac{a^2}{2\sigma_n^2}\)
段落序號i=1~8 | 段落碼\(C_2C_3C_4\) | 段落範圍(量化單位) | 段落起始電平(量化單位) | 段內量化間隔(量化單位) |
---|---|---|---|---|
8 | 1 1 1 | 1024~2048 | 1024 | 64 |
7 | 1 1 0 | 512~1024 | 512 | 32 |
6 | 1 0 1 | 256~512 | 256 | 16 |
5 | 1 0 0 | 128~256 | 128 | 8 |
4 | 0 1 1 | 64~128 | 64 | 4 |
3 | 0 1 0 | 32~64 | 32 | 2 |
2 | 0 0 1 | 16~32 | 16 | 1 |
1 | 0 0 0 | 0~16 | 0 | 1 |
\(a_{n-1}\oplus a_{n-2} \oplus...\oplus a_0=0(a_0爲監督位)\)
\(a_{n-1}\oplus a_{n-2} \oplus...\oplus a_0=1\)
\(A[a_6a_5a_4a_3a_2a_1a_0]\)
\(H\begin{bmatrix} 1&1&1&0&1&0&0\\ 1&1&0&1&0&1&0\\ 1&0&1&1&0&0&1 \end{bmatrix}監督矩陣\)
\(AH^\tau=0或HA^\tau=0\)
\(A=[a_6a_5a_4a_3]G\)
\(G=\begin{bmatrix} 1&0&0&0|&1&1&1\\ 0&1&0&0|&1&1&0\\ 0&0&1&0|&1&0&1\\ 0&0&0&1|&0&1&1 \end{bmatrix}\)
\(x^i*A(x)\equiv A'(x)\)