JavaShuo
欄目
標籤
Fine-tuning Convolitional Neural Networks for Biomedical Image Analysis: Actively and Incrementally
時間 2021-01-02
原文
原文鏈接
本篇論文發表於CVPR2017,作者爲美國亞利桑那州立大學着的在讀博士生周縱葦。它主要解決的仍然是生物醫學圖像在用於深度學習時數據量過少的問題:如何使用盡可能少的標籤數據來訓練一個效果promising的分類器。作者提出了一個AIFT (active,incremental fine-tuning)網絡,能夠節約標註的時間和成本,把主動學習和遷移學習集成到一個框架。AIFT算法開始是直接使用一個預
>>阅读原文<<
相關文章
1.
Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally如...
2.
Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally
3.
Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally
4.
Active learning-Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively a
5.
[Style Transfer]—Generative adversarial networks and adversarial method in biomedical image analysis
6.
U-Net: Convolutional Networks for Biomedical Image Segmentation
7.
Paper | U-Net: Convolutional Networks for Biomedical Image Segmentation
8.
[U-Net] U-Net: Convolutional Networks for Biomedical Image Segmentation
9.
U-Net: Convolutional Networks for Biomedical Image Segmentation翻譯
10.
[U-Net]Convolutional Networks for Biomedical Image Segmentation
更多相關文章...
•
RSS
元素
-
RSS 教程
•
ASP.NET Image 控件
-
ASP.NET 教程
•
RxJava操作符(七)Conditional and Boolean
•
Flink 數據傳輸及反壓詳解
相關標籤/搜索
networks
analysis
biomedical
neural
image
c#image
action.....and
between...and
react+and
for...of
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
正確理解商業智能 BI 的價值所在
2.
解決梯度消失梯度爆炸強力推薦的一個算法-----LSTM(長短時記憶神經網絡)
3.
解決梯度消失梯度爆炸強力推薦的一個算法-----GRU(門控循環神經⽹絡)
4.
HDU4565
5.
算概率投硬幣
6.
密碼算法特性
7.
DICOMRT-DiTools:clouddicom源碼解析(1)
8.
HDU-6128
9.
計算機網絡知識點詳解(持續更新...)
10.
hods2896(AC自動機)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally如...
2.
Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally
3.
Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally
4.
Active learning-Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively a
5.
[Style Transfer]—Generative adversarial networks and adversarial method in biomedical image analysis
6.
U-Net: Convolutional Networks for Biomedical Image Segmentation
7.
Paper | U-Net: Convolutional Networks for Biomedical Image Segmentation
8.
[U-Net] U-Net: Convolutional Networks for Biomedical Image Segmentation
9.
U-Net: Convolutional Networks for Biomedical Image Segmentation翻譯
10.
[U-Net]Convolutional Networks for Biomedical Image Segmentation
>>更多相關文章<<