JavaShuo
欄目
標籤
行人屬性--HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis
時間 2021-01-12
原文
原文鏈接
HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis ICCV2017 https://github.com/xh-liu/HydraPlus-Net 本文首次將 attention idea 應用到 行人屬性分析上來。 行人分析的難度還是比較大,因爲不同場合分析的側重點有所不同,有時需要側重局部信息,有時需要側重全局信息。S
>>阅读原文<<
相關文章
1.
行人屬性識別:A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
2.
行人屬性「Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca」
3.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
4.
Attribute-Recognition行人屬性識別資料
5.
行人屬性「Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios」
6.
「Medical Image Analysis」Note on Deep Attentional Features
7.
Pushing the Limits of Deep CNNs for Pedestrian Detection
8.
Attention-Based Pedestrian Attribute Analysis
9.
Learning Cross-Modal Deep Representations for Robust Pedestrian Detection
10.
Learning Deep Features for Discriminative Localization
更多相關文章...
•
Lua for 循環
-
Lua 教程
•
Swift for 循環
-
Swift 教程
•
JDK13 GA發佈:5大特性解讀
•
再有人問你分佈式事務,把這篇扔給他
相關標籤/搜索
analysis
pedestrian
features
attentive
deep
屬性
行性
行人
人性
PHP 7 新特性
Hibernate教程
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
windows下配置opencv
2.
HED神經網
3.
win 10+ annaconda+opencv
4.
ORB-SLAM3系列-多地圖管理
5.
opencv報錯——(mtype == CV_8U || mtype == CV_8S)
6.
OpenCV計算機視覺學習(9)——圖像直方圖 & 直方圖均衡化
7.
【超詳細】深度學習原理與算法第1篇---前饋神經網絡,感知機,BP神經網絡
8.
Python數據預處理
9.
ArcGIS網絡概述
10.
數據清洗(三)------檢查數據邏輯錯誤
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
行人屬性識別:A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
2.
行人屬性「Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca」
3.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
4.
Attribute-Recognition行人屬性識別資料
5.
行人屬性「Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios」
6.
「Medical Image Analysis」Note on Deep Attentional Features
7.
Pushing the Limits of Deep CNNs for Pedestrian Detection
8.
Attention-Based Pedestrian Attribute Analysis
9.
Learning Cross-Modal Deep Representations for Robust Pedestrian Detection
10.
Learning Deep Features for Discriminative Localization
>>更多相關文章<<