JavaShuo
欄目
標籤
行人屬性「Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios」
時間 2021-01-11
原文
原文鏈接
行人屬性預測中被多篇論文引用的論文。內容相對簡單,兩個網絡結構,DeepSAR對每個屬性獨立預測,DeepMAR多屬性聯合預測。 目前屬性預測關注的兩個場景:自然場景和監控場景。自然場景圖像質量一般比較高,而監控場景圖像一般比較模糊、分辨率低、光線變化比較大。屬性間一般是相互關聯的,如頭髮的長度可以幫助性別的識別。 網絡結構: 屬性通常不具有同一分佈,爲解決樣本不均問題,提出改進的損失函數: 其中
>>阅读原文<<
相關文章
1.
Pose Guided Deep Model for Pedestrian Attribute Recognition in Surveillance Scenarios
2.
行人屬性「Generative Adversarial Models for People Attribute Recognition in Surveillance」
3.
Attribute-Recognition行人屬性識別資料
4.
Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
5.
行人屬性識別:A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
6.
行人屬性「Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca」
7.
行人屬性識別:Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute……
8.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
9.
Multi-Task Learning via Co-Attentive Sharing for Pedestrian Attribute Recognition
10.
行人屬性「Attribute Recognition by Joint Recurrent Learning of Context and Correlation」
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
C# 特性(Attribute)
-
C#教程
•
JDK13 GA發佈:5大特性解讀
•
再有人問你分佈式事務,把這篇扔給他
相關標籤/搜索
for...in
for..in
for.....in
recognition
pedestrian
attribute
scenarios
learning
屬性
PHP 7 新特性
Hibernate教程
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
正確理解商業智能 BI 的價值所在
2.
解決梯度消失梯度爆炸強力推薦的一個算法-----LSTM(長短時記憶神經網絡)
3.
解決梯度消失梯度爆炸強力推薦的一個算法-----GRU(門控循環神經⽹絡)
4.
HDU4565
5.
算概率投硬幣
6.
密碼算法特性
7.
DICOMRT-DiTools:clouddicom源碼解析(1)
8.
HDU-6128
9.
計算機網絡知識點詳解(持續更新...)
10.
hods2896(AC自動機)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Pose Guided Deep Model for Pedestrian Attribute Recognition in Surveillance Scenarios
2.
行人屬性「Generative Adversarial Models for People Attribute Recognition in Surveillance」
3.
Attribute-Recognition行人屬性識別資料
4.
Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
5.
行人屬性識別:A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
6.
行人屬性「Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca」
7.
行人屬性識別:Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute……
8.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
9.
Multi-Task Learning via Co-Attentive Sharing for Pedestrian Attribute Recognition
10.
行人屬性「Attribute Recognition by Joint Recurrent Learning of Context and Correlation」
>>更多相關文章<<