JavaShuo
欄目
標籤
行人屬性「Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios」
時間 2021-01-11
原文
原文鏈接
行人屬性預測中被多篇論文引用的論文。內容相對簡單,兩個網絡結構,DeepSAR對每個屬性獨立預測,DeepMAR多屬性聯合預測。 目前屬性預測關注的兩個場景:自然場景和監控場景。自然場景圖像質量一般比較高,而監控場景圖像一般比較模糊、分辨率低、光線變化比較大。屬性間一般是相互關聯的,如頭髮的長度可以幫助性別的識別。 網絡結構: 屬性通常不具有同一分佈,爲解決樣本不均問題,提出改進的損失函數: 其中
>>阅读原文<<
相關文章
1.
Pose Guided Deep Model for Pedestrian Attribute Recognition in Surveillance Scenarios
2.
行人屬性「Generative Adversarial Models for People Attribute Recognition in Surveillance」
3.
Attribute-Recognition行人屬性識別資料
4.
Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
5.
行人屬性識別:A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
6.
行人屬性「Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca」
7.
行人屬性識別:Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute……
8.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
9.
Multi-Task Learning via Co-Attentive Sharing for Pedestrian Attribute Recognition
10.
行人屬性「Attribute Recognition by Joint Recurrent Learning of Context and Correlation」
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
C# 特性(Attribute)
-
C#教程
•
JDK13 GA發佈:5大特性解讀
•
再有人問你分佈式事務,把這篇扔給他
相關標籤/搜索
for...in
for..in
for.....in
recognition
pedestrian
attribute
scenarios
learning
屬性
PHP 7 新特性
Hibernate教程
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
部署Hadoop(3.3.0)僞分佈式集羣
2.
從0開始搭建hadoop僞分佈式集羣(三:Zookeeper)
3.
centos7 vmware 搭建集羣
4.
jsp的page指令
5.
Sql Server 2008R2 安裝教程
6.
python:模塊導入import問題總結
7.
Java控制修飾符,子類與父類,組合重載覆蓋等問題
8.
(實測)Discuz修改論壇最後發表的帖子的鏈接爲靜態地址
9.
java參數傳遞時,究竟傳遞的是什麼
10.
Linux---文件查看(4)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Pose Guided Deep Model for Pedestrian Attribute Recognition in Surveillance Scenarios
2.
行人屬性「Generative Adversarial Models for People Attribute Recognition in Surveillance」
3.
Attribute-Recognition行人屬性識別資料
4.
Grouping Attribute Recognition for Pedestrian with Joint Recurrent Learning
5.
行人屬性識別:A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
6.
行人屬性「Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca」
7.
行人屬性識別:Improving Pedestrian Attribute Recognition With Weakly-Supervised Multi-Scale Attribute……
8.
A Temporal Attentive Approach for Video-Based Pedestrian Attribute Recognition
9.
Multi-Task Learning via Co-Attentive Sharing for Pedestrian Attribute Recognition
10.
行人屬性「Attribute Recognition by Joint Recurrent Learning of Context and Correlation」
>>更多相關文章<<