iOS的網絡數據加密算法之HMAC淺談

 

前言html

  如今的加密方式有不少,目前計算環境和過去有很大的變化,許多數據資源可以依靠網絡來遠程存取,並且愈來愈多的通信依賴於公共網絡公共網絡(如 Internet),而這些環境並不保證明體間的安全通訊,數據在傳輸過程可能被其它人讀取或篡改。算法

加密將防止數據被查看或修改,並在本來不安全的信道上提供安全的通訊信道,它達到如下目的:安全

·  保密性:防止用戶的標識或數據被讀取。網絡

·  數據完整性:防止數據被更改。app

·  身份驗證:確保數據發自特定的一方。加密

 

HMAC運算步驟spa

 

        First-Hash = H(Ko XOR Ipad || (data to auth)) Second-Hash = H(Ko XOR Opad || First-Hash)code

 

(1) 在密鑰K後面添加0來建立一個字長爲B的字符串。(例如,若是K的字長是20htm

 

字節,B=64字節,則K後會加入44個零字節0x00)blog

 

(2) 將上一步生成的B字長的字符串與ipad作異或運算。

 

(3) 將數據流text填充至第二步的結果字符串中。

 

(4) 用H做用於第三步生成的數據流。

 

(5) 將第一步生成的B字長字符串與opad作異或運算。

 

(6) 再將第四步的結果填充進第五步的結果中。

 

(7) 用H做用於第六步生成的數據流,輸出最終結果

 

 

廢話很少說,上圖~

注意:須要包含着3個頭文件

   

#include <CommonCrypto/CommonDigest.h>
#include <CommonCrypto/CommonHMAC.h>
#include "base64.h"

  

+ (NSString *)hmacsha1:(NSString *)text key:(NSString *)secret {
    NSData *secretData = [secret dataUsingEncoding:NSUTF8StringEncoding];
    NSData *clearTextData = [text dataUsingEncoding:NSUTF8StringEncoding];
    unsigned char result[20];
    CCHmac(kCCHmacAlgSHA1, [secretData bytes], [secretData length], [clearTextData bytes], [clearTextData length], result);
    char base64Result[32];
    size_t theResultLength = 32;
    Base64EncodeData(result, 20, base64Result, &theResultLength,YES);
    NSData *theData = [NSData dataWithBytes:base64Result length:theResultLength];
    NSString *base64EncodedResult = [[NSString alloc] initWithData:theData encoding:NSASCIIStringEncoding];
    return base64EncodedResult;
}

這個方法使用到了base64的一些方法,因此要包含base64文件,下面是base64.h和base64.m的代碼:

//base64.h

extern size_t EstimateBas64EncodedDataSize(size_t inDataSize);
extern size_t EstimateBas64DecodedDataSize(size_t inDataSize);

extern bool Base64EncodeData(const void *inInputData, size_t inInputDataSize, char *outOutputData, size_t *ioOutputDataSize, BOOL wrapped);
extern bool Base64DecodeData(const void *inInputData, size_t inInputDataSize, void *ioOutputData, size_t *ioOutputDataSize);
//base64.m

#include "base64.h"
#include <math.h>

const UInt8 kBase64EncodeTable[64] = {
/*  0 */ 'A',    /*  1 */ 'B',    /*  2 */ 'C',    /*  3 */ 'D', 
/*  4 */ 'E',    /*  5 */ 'F',    /*  6 */ 'G',    /*  7 */ 'H', 
/*  8 */ 'I',    /*  9 */ 'J',    /* 10 */ 'K',    /* 11 */ 'L', 
/* 12 */ 'M',    /* 13 */ 'N',    /* 14 */ 'O',    /* 15 */ 'P', 
/* 16 */ 'Q',    /* 17 */ 'R',    /* 18 */ 'S',    /* 19 */ 'T', 
/* 20 */ 'U',    /* 21 */ 'V',    /* 22 */ 'W',    /* 23 */ 'X', 
/* 24 */ 'Y',    /* 25 */ 'Z',    /* 26 */ 'a',    /* 27 */ 'b', 
/* 28 */ 'c',    /* 29 */ 'd',    /* 30 */ 'e',    /* 31 */ 'f', 
/* 32 */ 'g',    /* 33 */ 'h',    /* 34 */ 'i',    /* 35 */ 'j', 
/* 36 */ 'k',    /* 37 */ 'l',    /* 38 */ 'm',    /* 39 */ 'n', 
/* 40 */ 'o',    /* 41 */ 'p',    /* 42 */ 'q',    /* 43 */ 'r', 
/* 44 */ 's',    /* 45 */ 't',    /* 46 */ 'u',    /* 47 */ 'v', 
/* 48 */ 'w',    /* 49 */ 'x',    /* 50 */ 'y',    /* 51 */ 'z', 
/* 52 */ '0',    /* 53 */ '1',    /* 54 */ '2',    /* 55 */ '3', 
/* 56 */ '4',    /* 57 */ '5',    /* 58 */ '6',    /* 59 */ '7', 
/* 60 */ '8',    /* 61 */ '9',    /* 62 */ '+',    /* 63 */ '/'
};

/*
 -1 = Base64 end of data marker.
 -2 = White space (tabs, cr, lf, space)
 -3 = Noise (all non whitespace, non-base64 characters) 
 -4 = Dangerous noise
 -5 = Illegal noise (null byte)
 */

const SInt8 kBase64DecodeTable[128] = {
/* 0x00 */ -5,     /* 0x01 */ -3,     /* 0x02 */ -3,     /* 0x03 */ -3,
/* 0x04 */ -3,     /* 0x05 */ -3,     /* 0x06 */ -3,     /* 0x07 */ -3,
/* 0x08 */ -3,     /* 0x09 */ -2,     /* 0x0a */ -2,     /* 0x0b */ -2,
/* 0x0c */ -2,     /* 0x0d */ -2,     /* 0x0e */ -3,     /* 0x0f */ -3,
/* 0x10 */ -3,     /* 0x11 */ -3,     /* 0x12 */ -3,     /* 0x13 */ -3,
/* 0x14 */ -3,     /* 0x15 */ -3,     /* 0x16 */ -3,     /* 0x17 */ -3,
/* 0x18 */ -3,     /* 0x19 */ -3,     /* 0x1a */ -3,     /* 0x1b */ -3,
/* 0x1c */ -3,     /* 0x1d */ -3,     /* 0x1e */ -3,     /* 0x1f */ -3,
/* ' ' */ -2,    /* '!' */ -3,    /* '"' */ -3,    /* '#' */ -3,
/* '$' */ -3,    /* '%' */ -3,    /* '&' */ -3,    /* ''' */ -3,
/* '(' */ -3,    /* ')' */ -3,    /* '*' */ -3,    /* '+' */ 62,
/* ',' */ -3,    /* '-' */ -3,    /* '.' */ -3,    /* '/' */ 63,
/* '0' */ 52,    /* '1' */ 53,    /* '2' */ 54,    /* '3' */ 55,
/* '4' */ 56,    /* '5' */ 57,    /* '6' */ 58,    /* '7' */ 59,
/* '8' */ 60,    /* '9' */ 61,    /* ':' */ -3,    /* ';' */ -3,
/* '<' */ -3,    /* '=' */ -1,    /* '>' */ -3,    /* '?' */ -3,
/* '@' */ -3,    /* 'A' */ 0,    /* 'B' */  1,    /* 'C' */  2,
/* 'D' */  3,    /* 'E' */  4,    /* 'F' */  5,    /* 'G' */  6,
/* 'H' */  7,    /* 'I' */  8,    /* 'J' */  9,    /* 'K' */ 10,
/* 'L' */ 11,    /* 'M' */ 12,    /* 'N' */ 13,    /* 'O' */ 14,
/* 'P' */ 15,    /* 'Q' */ 16,    /* 'R' */ 17,    /* 'S' */ 18,
/* 'T' */ 19,    /* 'U' */ 20,    /* 'V' */ 21,    /* 'W' */ 22,
/* 'X' */ 23,    /* 'Y' */ 24,    /* 'Z' */ 25,    /* '[' */ -3,
/* '\' */ -3,    /* ']' */ -3,    /* '^' */ -3,    /* '_' */ -3,
/* '`' */ -3,    /* 'a' */ 26,    /* 'b' */ 27,    /* 'c' */ 28,
/* 'd' */ 29,    /* 'e' */ 30,    /* 'f' */ 31,    /* 'g' */ 32,
/* 'h' */ 33,    /* 'i' */ 34,    /* 'j' */ 35,    /* 'k' */ 36,
/* 'l' */ 37,    /* 'm' */ 38,    /* 'n' */ 39,    /* 'o' */ 40,
/* 'p' */ 41,    /* 'q' */ 42,    /* 'r' */ 43,    /* 's' */ 44,
/* 't' */ 45,    /* 'u' */ 46,    /* 'v' */ 47,    /* 'w' */ 48,
/* 'x' */ 49,    /* 'y' */ 50,    /* 'z' */ 51,    /* '{' */ -3,
/* '|' */ -3,    /* '}' */ -3,    /* '~' */ -3,    /* 0x7f */ -3
};

const UInt8 kBits_00000011 = 0x03;
const UInt8 kBits_00001111 = 0x0F;
const UInt8 kBits_00110000 = 0x30;
const UInt8 kBits_00111100 = 0x3C;
const UInt8 kBits_00111111 = 0x3F;
const UInt8 kBits_11000000 = 0xC0;
const UInt8 kBits_11110000 = 0xF0;
const UInt8 kBits_11111100 = 0xFC;

size_t EstimateBas64EncodedDataSize(size_t inDataSize)
{
    size_t theEncodedDataSize = (int)ceil(inDataSize / 3.0) * 4;
    theEncodedDataSize = theEncodedDataSize / 72 * 74 + theEncodedDataSize % 72;
    return(theEncodedDataSize);
}

size_t EstimateBas64DecodedDataSize(size_t inDataSize)
{
    size_t theDecodedDataSize = (int)ceil(inDataSize / 4.0) * 3;
    //theDecodedDataSize = theDecodedDataSize / 72 * 74 + theDecodedDataSize % 72;
    return(theDecodedDataSize);
}

bool Base64EncodeData(const void *inInputData, size_t inInputDataSize, char *outOutputData, size_t *ioOutputDataSize, BOOL wrapped)
{
    size_t theEncodedDataSize = EstimateBas64EncodedDataSize(inInputDataSize);
    if (*ioOutputDataSize < theEncodedDataSize)
        return(false);
    *ioOutputDataSize = theEncodedDataSize;
    const UInt8 *theInPtr = (const UInt8 *)inInputData;
    UInt32 theInIndex = 0, theOutIndex = 0;
    for (; theInIndex < (inInputDataSize / 3) * 3; theInIndex += 3)
    {
        outOutputData[theOutIndex++] = kBase64EncodeTable[(theInPtr[theInIndex] & kBits_11111100) >> 2];
        outOutputData[theOutIndex++] = kBase64EncodeTable[(theInPtr[theInIndex] & kBits_00000011) << 4 | (theInPtr[theInIndex + 1] & kBits_11110000) >> 4];
        outOutputData[theOutIndex++] = kBase64EncodeTable[(theInPtr[theInIndex + 1] & kBits_00001111) << 2 | (theInPtr[theInIndex + 2] & kBits_11000000) >> 6];
        outOutputData[theOutIndex++] = kBase64EncodeTable[(theInPtr[theInIndex + 2] & kBits_00111111) >> 0];
        if (wrapped && (theOutIndex % 74 == 72))
        {
            outOutputData[theOutIndex++] = '\r';
            outOutputData[theOutIndex++] = '\n';
        }
    }
    const size_t theRemainingBytes = inInputDataSize - theInIndex;
    if (theRemainingBytes == 1)
    {
        outOutputData[theOutIndex++] = kBase64EncodeTable[(theInPtr[theInIndex] & kBits_11111100) >> 2];
        outOutputData[theOutIndex++] = kBase64EncodeTable[(theInPtr[theInIndex] & kBits_00000011) << 4 | (0 & kBits_11110000) >> 4];
        outOutputData[theOutIndex++] = '=';
        outOutputData[theOutIndex++] = '=';
        if (wrapped && (theOutIndex % 74 == 72))
        {
            outOutputData[theOutIndex++] = '\r';
            outOutputData[theOutIndex++] = '\n';
        }
    }
    else if (theRemainingBytes == 2)
    {
        outOutputData[theOutIndex++] = kBase64EncodeTable[(theInPtr[theInIndex] & kBits_11111100) >> 2];
        outOutputData[theOutIndex++] = kBase64EncodeTable[(theInPtr[theInIndex] & kBits_00000011) << 4 | (theInPtr[theInIndex + 1] & kBits_11110000) >> 4];
        outOutputData[theOutIndex++] = kBase64EncodeTable[(theInPtr[theInIndex + 1] & kBits_00001111) << 2 | (0 & kBits_11000000) >> 6];
        outOutputData[theOutIndex++] = '=';
        if (wrapped && (theOutIndex % 74 == 72))
        {
            outOutputData[theOutIndex++] = '\r';
            outOutputData[theOutIndex++] = '\n';
        }
    }
    return(true);
}

bool Base64DecodeData(const void *inInputData, size_t inInputDataSize, void *ioOutputData, size_t *ioOutputDataSize)
{
    memset(ioOutputData, '.', *ioOutputDataSize);
    
    size_t theDecodedDataSize = EstimateBas64DecodedDataSize(inInputDataSize);
    if (*ioOutputDataSize < theDecodedDataSize)
        return(false);
    *ioOutputDataSize = 0;
    const UInt8 *theInPtr = (const UInt8 *)inInputData;
    UInt8 *theOutPtr = (UInt8 *)ioOutputData;
    size_t theInIndex = 0, theOutIndex = 0;
    UInt8 theOutputOctet;
    size_t theSequence = 0;
    for (; theInIndex < inInputDataSize; )
    {
        SInt8 theSextet = 0;
        
        SInt8 theCurrentInputOctet = theInPtr[theInIndex];
        theSextet = kBase64DecodeTable[theCurrentInputOctet];
        if (theSextet == -1)
            break;
        while (theSextet == -2)
        {
            theCurrentInputOctet = theInPtr[++theInIndex];
            theSextet = kBase64DecodeTable[theCurrentInputOctet];
        }
        while (theSextet == -3)
        {
            theCurrentInputOctet = theInPtr[++theInIndex];
            theSextet = kBase64DecodeTable[theCurrentInputOctet];
        }
        if (theSequence == 0)
        {
            theOutputOctet = (theSextet >= 0 ? theSextet : 0) << 2 & kBits_11111100;
        }
        else if (theSequence == 1)
        {
            theOutputOctet |= (theSextet >- 0 ? theSextet : 0) >> 4 & kBits_00000011;
            theOutPtr[theOutIndex++] = theOutputOctet;
        }
        else if (theSequence == 2)
        {
            theOutputOctet = (theSextet >= 0 ? theSextet : 0) << 4 & kBits_11110000;
        }
        else if (theSequence == 3)
        {
            theOutputOctet |= (theSextet >= 0 ? theSextet : 0) >> 2 & kBits_00001111;
            theOutPtr[theOutIndex++] = theOutputOctet;
        }
        else if (theSequence == 4)
        {
            theOutputOctet = (theSextet >= 0 ? theSextet : 0) << 6 & kBits_11000000;
        }
        else if (theSequence == 5)
        {
            theOutputOctet |= (theSextet >= 0 ? theSextet : 0) >> 0 & kBits_00111111;
            theOutPtr[theOutIndex++] = theOutputOctet;
        }
        theSequence = (theSequence + 1) % 6;
        if (theSequence != 2 && theSequence != 4)
            theInIndex++;
    }
    *ioOutputDataSize = theOutIndex;
    return(true);
}

 

 

 

安全性淺析

 

由上面的介紹,咱們能夠看出,HMAC算法更象是一種加密算法,它引入了密鑰,其安全性已經不徹底依賴於所使用的HASH算法,安全性主要有如下幾點保證:

 使用的密鑰是雙方事先約定的,第三方不可能知道。由3.2介紹的應用流程能夠看出,做爲非法截獲信息的第三方,可以獲得的信息只有做爲"挑戰"的隨機數和做爲"響應"的HMAC結果,沒法根據這兩個數據推算出密鑰。因爲不知道密鑰,因此沒法仿造出一致的響應,安全性是值得信賴的。

相關文章
相關標籤/搜索