關於「彩蛋」,數據結構與算法系列博客中,若有可能,博主儘可能會在每一篇博客裏埋下彩蛋。彩蛋的意義在剛開始寫博客的開篇有說明過,實際就是算法實現過程的一些小技巧,而這些小技巧每每都是能夠改進執行效率的。關於全部的彩蛋都會有特別的解釋說明,千里之行始於足下,共勉~java
進階版對比普通版效率上有質的提升,主要是將雙重for循環的內存循環拆成了獨立的方法,這即是本文的彩蛋。
複製代碼
public int minDeletionSize1(String[] A) {
if (A.length == 0) return 0;
int count = 0;
for (int i = 0; i < A[0].length(); ++i) {
for (int j = 1; j < A.length; ++j) {
if (A[j].charAt(i) < A[j - 1].charAt(i)) {
count++;
break;
}
}
}
return count;
}
複製代碼
public int minDeletionSize1(String[] A) {
if (A.length == 0) return 0;
int count = 0;
for (int i = 0; i < A[0].length(); i++) {
for (int j = 1; j < A.length; j++) {
if (A[j].charAt(i) < A[j - 1].charAt(i)) {
count++;
break;
}
}
}
return count;
}
複製代碼
public int minDeletionSize1(java.lang.String[]);
Code:
0: aload_1
1: ifnonnull 6
4: iconst_0
5: ireturn
6: iconst_0
7: istore_2
8: iconst_0
9: istore_3
10: iload_3
11: aload_1
12: iconst_0
13: aaload
14: invokevirtual #2 // Method java/lang/String.length:()I
17: if_icmpge 69
20: iconst_1
21: istore 4
23: iload 4
25: aload_1
26: arraylength
27: if_icmpge 63
30: aload_1
31: iload 4
33: aaload
34: iload_3
35: invokevirtual #3 // Method java/lang/String.charAt:(I)C
38: aload_1
39: iload 4
41: iconst_1
42: isub
43: aaload
44: iload_3
45: invokevirtual #3 // Method java/lang/String.charAt:(I)C
48: if_icmpge 57
51: iinc 2, 1 //++count
54: goto 63 //break繼續內層for循環
57: iinc 4, 1 //++j
60: goto 23 //繼續內層for循環
63: iinc 3, 1 //++i
66: goto 10 //繼續外層for循環
69: iload_2
70: ireturn
複製代碼
public int minDeletionSize2(java.lang.String[]);
Code:
0: aload_1
1: ifnonnull 6
4: iconst_0
5: ireturn
6: iconst_0
7: istore_2
8: iconst_0
9: istore_3
10: iload_3
11: aload_1
12: iconst_0
13: aaload
14: invokevirtual #2 // Method java/lang/String.length:()I
17: if_icmpge 37
20: aload_1
21: iload_3
22: invokestatic #4 // Method isNoSort:([Ljava/lang/String;I)Z
25: ifeq 31
28: iinc 2, 1
31: iinc 3, 1
34: goto 10
37: iload_2
38: ireturn
public static boolean isNoSort(java.lang.String[], int);
Code:
0: iconst_1
1: istore_2
2: iload_2
3: aload_0
4: arraylength
5: if_icmpge 35
8: aload_0
9: iload_2
10: aaload
11: iload_1
12: invokevirtual #3 // Method java/lang/String.charAt:(I)C
15: aload_0
16: iload_2
17: iconst_1
18: isub
19: aaload
20: iload_1
21: invokevirtual #3 // Method java/lang/String.charAt:(I)C
24: if_icmpge 29
27: iconst_1 //true賦值
28: ireturn //return true
29: iinc 2, 1 //++i
32: goto 2 //繼續內層for循環
35: iconst_0 //false賦值
36: ireturn //return false
複製代碼
比較雙重for循環和封裝的字節碼會發現,核心的字節碼實現基本是一致。細節上有略微區別(主要表如今註釋的幾行),封裝法的字節碼實現甚至在代碼行數上甚至並不具有優點。可是仔細觀察對比封裝實現的字節碼方法體的goto指令(32)和雙重for循環實現的字節碼中的goto指令(60),再對比字節碼中循環體的開始位置,封裝法goto:0~32,雙重for循環goto:20~60,結合goto指令實際移動棧針中指針位置的特色,封裝對比雙重for循環實際在屢次循環的狀況下對指針的操做開銷會更低一些。node
封裝除了能對複雜的業務邏輯代碼進行拆分解耦,提升代碼可讀性、可維護性。同時在一些場景下也能提升程序執行效率,雙重for循環就是最經典的實例。面試
對比三種實現代碼執行結果會發現,三種方法最終leetcode測評的效率都是100%,可是方法一的runtime時間確實1ms,而方法二和方法三的runtime倒是0ms。爲何一樣的算法思想使用不一樣的數據結構,使用Stack比使用LinkedList要慢呢?這即是本篇的彩蛋!
複製代碼
public TreeNode invertTree(TreeNode root) {
if (root == null) {
return null;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while(!stack.isEmpty()) {
final TreeNode node = stack.pop();
final TreeNode left = node.left;
node.left = node.right;
node.right = left;
if(node.left != null) {
stack.push(node.left);
}
if(node.right != null) {
stack.push(node.right);
}
}
return root;
}
複製代碼
public TreeNode invertTree(TreeNode root) {
if (root == null) {
return null;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
TreeNode left = node.left;
node.left = node.right;
node.right = left;
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
return root;
}
複製代碼
本質上是因爲不一樣的數據結構在底層源碼實現的不一樣致使。上述兩種方法執行主要不一樣在於分別使用了stack.push、stack.pop(棧實現)和queue.offer、queue.pop方法(隊列實現)。對比下二者實現源碼:算法
/** * The <code>Stack</code> class represents a last-in-first-out * (LIFO) stack of objects. It extends class <tt>Vector</tt> with five * operations that allow a vector to be treated as a stack. The usual * <tt>push</tt> and <tt>pop</tt> operations are provided, as well as a * method to <tt>peek</tt> at the top item on the stack, a method to test * for whether the stack is <tt>empty</tt>, and a method to <tt>search</tt> * the stack for an item and discover how far it is from the top. * <p> * When a stack is first created, it contains no items. * * <p>A more complete and consistent set of LIFO stack operations is * provided by the {@link Deque} interface and its implementations, which * should be used in preference to this class. For example: * <pre> {@code * Deque<Integer> stack = new ArrayDeque<Integer>();}</pre> * * @author Jonathan Payne * @since JDK1.0 */
public
class Stack<E> extends Vector<E> {
/** * Creates an empty Stack. */
public Stack() {
}
/** * Pushes an item onto the top of this stack. This has exactly * the same effect as: * <blockquote><pre> * addElement(item)</pre></blockquote> * * @param item the item to be pushed onto this stack. * @return the <code>item</code> argument. * @see java.util.Vector#addElement */
public E push(E item) {
addElement(item);
return item;
}
...
}
複製代碼
Stack類繼承自vector,push方法中調用子類Vector中的addElement,Vector類中addElement的源碼:bash
/** * Adds the specified component to the end of this vector, * increasing its size by one. The capacity of this vector is * increased if its size becomes greater than its capacity. * * <p>This method is identical in functionality to the * {@link #add(Object) add(E)} * method (which is part of the {@link List} interface). * * @param obj the component to be added */
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
}
複製代碼
源碼中的addElement被synchronized修飾,整個方法體作了加了同步鎖。數據結構
/**
* Adds the specified element as the tail (last element) of this list.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @since 1.5
*/
public boolean offer(E e) {
return add(e);
}
...
/**
* Appends the specified element to the end of this list.
*
* <p>This method is equivalent to {@link #addLast}.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
*/
public boolean add(E e) {
linkLast(e);
return true;
}
...
/**
* Links e as last element.
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
複製代碼
LinkedList類中,offer方法調用add方法,add方法調用linkedLast方法,三個方法均沒發現synchronized關鍵字app
synchronized同步會大大較低方法執行效率,talk is cheap,show me the code:ide
public static void main(String[] args) {
Syn syn = new Syn();
long start1 = System.nanoTime();
for (int i = 0; i < 1000; i++) {
syn.test1();
}
System.out.println("syn耗時(ms):" + Long.toString((System.nanoTime() - start1) / 1000));
long start2 = System.nanoTime();
for (int i = 0; i < 1000; i++) {
syn.test1();
}
System.out.println("非syn耗時(ms):" + Long.toString((System.nanoTime() - start2) / 1000));
}
public synchronized int test1() {
return 1;
}
public int test2() {
return 1;
}
複製代碼
syn耗時(ms):126
非syn耗時(ms):37
複製代碼
進一步證實了synchronized同步會下降執行效率,可是爲何synchronized會下降執行效率?筆者推薦閱讀《深刻理解Java虛擬機》第13章,因爲主題和篇幅關係本篇不具體展開。源碼分析
本篇核心結論,兩個重點:一、多使用方法封裝,減小嵌套for循環;二、Stak比LinkedList高效,因爲基類方法加了鎖,而鎖會下降執行效率,除非必要減小synchronized的使用。最後,若是以爲本篇對你有所幫助不妨關注一波,來個贊~優化