Ceph 之RGW Cache

Overview

緩存是爲達到系統快速響應的一項關鍵技術,Ceph 做爲一個複雜的分佈式存儲系統,有多種、多級緩存存在。緩存按照位置分爲:linux

  • 客戶端緩存
  • 服務端緩存
  • 網絡中緩存

按照部署方式分爲:c++

  • 單體緩存
  • 緩存集羣
  • 分佈式緩存

而Rados 網關緩存,也即RGW Cache 按照位置:做爲Ceph client 能夠歸爲客戶端緩存,做爲上層應用的服務端能夠歸爲服務端緩存。而按照部署方式則爲分佈式緩存,由於Ceph 集羣一般會存在多個RGW 實例,分佈式緩存會涉及到緩存同步等問題。git

RGW Cache 將對象存儲的相關元數據存儲在內部緩存中,用於提高性能。github

RGW Cache 執行路徑

前面已經提到,目前Ceph 中涉及RGW Cache 的配置參數有三個:算法

  • rgw_cache_enabled: RGW Cache 開關,默認爲true,即開啓。
  • rgw_cache_expiry_interval: 緩存數據的過時時間,默認900秒。
  • rgw_cache_lru_size: RGW 緩存entries的最大數量,當緩存滿後會根據LRU算法作緩存entries替換,entries size默認爲10000。讀請求較多的場景,適當大的參數配置能夠帶來更好的性能。

查看RGW cache 命中率:swift

[root@umstor14 build]# bin/ceph daemon out/radosgw.8000.asok perf dump|grep cache
        "cache_hit": 336,
        "cache_miss": 135,

ceph.conf 中配置參數rgw_cache_enabled。緩存

rgw_main.cc 中,得到RGWRados *store:cookie

int main() {
  RGWRados *store =
    RGWStoreManager::get_storage(g_ceph_context,
                 g_conf()->rgw_enable_gc_threads,
                 g_conf()->rgw_enable_lc_threads,
                 g_conf()->rgw_enable_bl_threads,
                 g_conf()->rgw_enable_quota_threads,
                 g_conf()->rgw_run_sync_thread,
                 g_conf().get_val<bool>("rgw_dynamic_resharding"),
                 g_conf()->rgw_cache_enabled); // 獲取rgw_cache_enabled 的配置,決定是否開啓緩存
}

調用路徑以下:網絡

RGWRados RGWStoreManager::RGWStoreManager::get_storage() ==> RGWRados RGWStoreManager::init_storage_provider() ==> int RGWRados::initialize(CephContext *_cct) ==> int RGWRados::initialize()數據結構

/** 
 * Initialize the RADOS instance and prepare to do other ops
 * Returns 0 on success, -ERR# on failure.
 */
int RGWRados::initialize()
{
  int ret;

  inject_notify_timeout_probability =
    cct->_conf.get_val<double>("rgw_inject_notify_timeout_probability");
  max_notify_retries = cct->_conf.get_val<uint64_t>("rgw_max_notify_retries");

  ret = init_svc(false); // 初始化包含svc_sysobj, sysobj_cache, svc_notify等的RGW Services
  if (ret < 0) {
    ldout(cct, 0) << "ERROR: failed to init services (ret=" << cpp_strerror(-ret) << ")" << dendl;
    return ret;
  }

  host_id = svc.zone_utils->gen_host_id();

  ret = init_rados(); //rados 相關上下文初始化
  if (ret < 0)
    return ret;

  return init_complete(); // 初始化gc,lc,reshard 等線程
}

RGWRados *store的初始化中初始化RGW 服務:

int RGWRados::init_svc(bool raw) raw=false ==> int RGWServices::init(CephContext cct, bool have_cache) ==> int RGWServices::do_init(CephContext cct, bool have_cache, false) ==> int RGWServices_Def::init(CephContext *cct, bool have_cache, false)

int RGWServices_Def::init(CephContext *cct,
              bool have_cache,
                          bool raw)
{
  finisher = std::make_unique<RGWSI_Finisher>(cct);
  notify = std::make_unique<RGWSI_Notify>(cct);
  rados = std::make_unique<RGWSI_RADOS>(cct);
  zone = std::make_unique<RGWSI_Zone>(cct);
  zone_utils = std::make_unique<RGWSI_ZoneUtils>(cct);
  quota = std::make_unique<RGWSI_Quota>(cct);
  sync_modules = std::make_unique<RGWSI_SyncModules>(cct);
  sysobj = std::make_unique<RGWSI_SysObj>(cct);
  sysobj_core = std::make_unique<RGWSI_SysObj_Core>(cct);

  if (have_cache) {
    sysobj_cache = std::make_unique<RGWSI_SysObj_Cache>(cct);
  }

  ...
  // 各種服務初始化
  sysobj_core->core_init(rados.get(), zone.get());
  if (have_cache) {
    sysobj_cache->init(rados.get(), zone.get(), notify.get());
    sysobj->init(rados.get(), sysobj_cache.get());
  } else {
    sysobj->init(rados.get(), sysobj_core.get());
  }
  ...
  //啓動notify 服務
  if (!raw) {
    r = notify->start();
    if (r < 0) {
      ldout(cct, 0) << "ERROR: failed to start notify service (" << cpp_strerror(-r) << dendl;
      return r;
    }
  }
  ...
  // 啓動sysobj_core 服務
  r = sysobj_core->start();
  if (r < 0) {
    ldout(cct, 0) << "ERROR: failed to start sysobj_core service (" << cpp_strerror(-r) << dendl;
    return r;
  }
  // 根據參數配置選擇是否啓動sysobj_cache 服務
  if (have_cache) {
    r = sysobj_cache->start();
    if (r < 0) {
      ldout(cct, 0) << "ERROR: failed to start sysobj_cache service (" << cpp_strerror(-r) << dendl;
      return r;
    }
  }
  // 啓動sysobj 服務
  r = sysobj->start();
  if (r < 0) {
    ldout(cct, 0) << "ERROR: failed to start sysobj service (" << cpp_strerror(-r) << dendl;
    return r;
  }
  /* cache or core services will be started by sysobj */
  return 0;
}

CacheProovider RGWSI_SysObj_Cache繼承自RGWSI_SysObj_Core,而RGWSI_SysObj_Core 又是RGWServiceInstance的子類。
最終啓動RGWSI_SysObj_Cache 服務。

int RGWServiceInstance::start() ==> virtual int RGWServiceInstance::do_start() ==> int RGWSI_SysObj_Cache::do_start()

子類RGWSI_SysObj_Cache::do_start()中

int RGWSI_SysObj_Cache::do_start()
{
  int r = RGWSI_SysObj_Core::do_start(); // 目前並沒作什麼,return 0
  if (r < 0) {
    return r;
  }
  // 啓動notify 服務,爲了後面的不一樣實例間的緩存分發
  r = notify_svc->start();
  if (r < 0) {
    return r;
  }

  assert(notify_svc->is_started());

  cb.reset(new RGWSI_SysObj_Cache_CB(this)); // 初始化回調對象

  // 註冊包含回調函數的對象至notify_svc
  // 經過notify_svc 的watch/notify 機制調用到已註冊的回調函數 int RGWSI_SysObj_Cache::watch_cb()
  notify_svc->register_watch_cb(cb.get());

  return 0;
}

watch_cb()的調用路徑是:

int RGWSI_Notify::watch_cb() ==> int RGWSI_SysObj_Cache_CB::watch_cb() ==> int RGWSI_SysObj_Cache::watch_cb()

RGW Cache 組織架構

通常的Cache 系統會有如下四個重要的概念:

  • CachingProvider:定義了建立、配置、獲取、管理和控制一個或多個CacheManager。一個應用能夠訪問多個CachingProvider。
  • CacheManager:定義了建立、配置、獲取、管理和控制一個或多個惟一命名的Cache,這些Cache 存在於CacheManager的上下文中。一個CacheManager僅被一個CachingProvider擁有。
  • Cache:是一個相似於Map 的數據結構並臨時存儲以key 爲索引的值。一個Cache 僅被一個CacheManager 擁有。
  • Entry:是一個存儲在Cache 中的key-value 對。

CachingProvider <>-----> CacheManager <>-----> Cache <>-----> Entry

RGW Cache 主要在如下源文件中實現:

  • rgw_cache.h
  • rgw_cache.cc
  • svc_sys_obj_cache.h
  • svc_sys_obj_cache.cc

類圖結構以下:

根據各部分起到的做用,其中

  • ObjectCache 就是CacheManager 的角色,管理一個Cache(Map)(即std::unordered_map<string, ObjectCacheEntry> cache_map)。
  • RGWSI_SysObj_Cache 至關於CachingProvider,管理一個CacheManager(即ObjectCache cache)。
  • ObjectCacheEntry 固然就是Entry 的角色。

CachingProvider RGWSI_SysObj_Cache:

class RGWSI_SysObj_Cache : public RGWSI_SysObj_Core
{
    //......
    RGWSI_Notify *notify_svc{nullptr};
    ObjectCache cache; //

    std::shared_ptr<RGWSI_SysObj_Cache_CB> cb;
};

關於Entry ObjectCacheEntry

struct ObjectCacheEntry {
  ObjectCacheInfo info; //包含緩存對象data、metadata及xattr
  std::list<string>::iterator lru_iter;
  uint64_t lru_promotion_ts;
  uint64_t gen; //entry 的版本,初始爲0,每次更新後加一
  std::vector<pair<RGWChainedCache *, string> > chained_entries; //

  ObjectCacheEntry() : lru_promotion_ts(0), gen(0) {}
};

每一個Entry 中包含對應Object 的緩存數據及相關信息,LRU信息,版本信息,chained_entries 等。

struct ObjectCacheInfo {
  int status = 0;
  uint32_t flags = 0; //?
  uint64_t epoch = 0; //?
  bufferlist data;
  map<string, bufferlist> xattrs;
  map<string, bufferlist> rm_xattrs; // 待移除xattrs
  ObjectMetaInfo meta;
  obj_version version = {};
  ceph::coarse_mono_time time_added; //加入緩存的時間, 從新加入緩存的對象須要更新該時間
......
};

能夠看到Cache 中包含了數據、元數據以及xattr等信息。

緩存管理

前面提到ObjectCache充當了CacheManager的角色,而RGWSI_SysObj_Cache至關於CachingProvider

基於LRU 的淘汰算法

LRU 是一類常見的緩存淘汰算法,在Ehcache,Redis等不少系統中都有實現或改進實現。
LRU(Least recently used,最近最少使用)算法根據數據的歷訪問記錄來進行數據淘汰,其核心思想是:若是數據最近被訪問過,那麼未來被訪問到的機率也很高。

  • 而最近不多被使用的數據,很大機率下一次再也不用到。
  • 當緩存容量的滿時候,優先淘汰最近不多使用的數據。

LRU 操做總結:

  • 新數據直接插入到列表頭部
  • 緩存數據被命中,將數據移動到列表頭部
  • 緩存已滿的時候,移除列表尾部數據。

CachingProvider

RGWSI_SysObj_Cache 做爲CachingProvider,它負責對CacheManager ObjectCache的管理。
新的系統對象服務(system objects service)經過sysobj_core 用於核心的操做,這樣能夠在system objects service 上擴展cache service,以實現object cache,其在PR 24014中引入。
RGWSI_SysObj_Core 是系統對象的基本抽象:屬性和方法,RGWSI_SysObj_Cache 繼承自RGWSI_SysObj_Core,實現cache service 的擴展。

class RGWSI_SysObj_Cache : public RGWSI_SysObj_Core
{
    //......
    RGWSI_Notify *notify_svc{nullptr};
    ObjectCache cache; //

    std::shared_ptr<RGWSI_SysObj_Cache_CB> cb;
protected:
  void init(RGWSI_RADOS *_rados_svc,
            RGWSI_Zone *_zone_svc,
            RGWSI_Notify *_notify_svc) {
    core_init(_rados_svc, _zone_svc);
    notify_svc = _notify_svc;
  }

  int do_start() override;

  int raw_stat(const rgw_raw_obj& obj, uint64_t *psize, real_time *pmtime, uint64_t *epoch,
               map<string, bufferlist> *attrs, bufferlist *first_chunk,
               RGWObjVersionTracker *objv_tracker) override;

  int read(); //讀操做
  int get_attr(); // 獲取xattr
  int set_attrs(); // 設置xattr
  int remove(); //移除緩存
  int write();
  int write_data(); //
  int distribute_cache(); // 分發緩存,由於一般會有多個RGW 實例,須要將緩存在多個RGW 實例間同步,保證數據一致性。
  int watch_cb(); // watch 回調函數
  void set_enabled(bool status); // watch/notify 開關,用於分佈式多RGW 實例的緩存同步
public:
  // chain cache
  bool chain_cache_entry(std::initializer_list<rgw_cache_entry_info *> cache_info_entries,
                         RGWChainedCache::Entry *chained_entry);
  ......
};

移除緩存remove()

int RGWSI_SysObj_Cache::remove(RGWSysObjectCtxBase& obj_ctx,
                               RGWObjVersionTracker *objv_tracker,
                               const rgw_raw_obj& obj)

{
  rgw_pool pool;
  string oid;
  normalize_pool_and_obj(obj.pool, obj.oid, pool, oid);

  string name = normal_name(pool, oid);
  // 根據前面構成的標準cache name,調用CacheManager的bool ObjectCache::remove(const string& name) 執行緩存刪除
  cache.remove(name);

  ObjectCacheInfo info;
  // 向分佈式系統中的其餘RGW 實例分發緩存操做
  int r = distribute_cache(name, obj, info, REMOVE_OBJ);
  if (r < 0) {
    ldout(cct, 0) << "ERROR: " << __func__ << "(): failed to distribute cache: r=" << r << dendl;
  }
  // 刪除sysobj_core 對象
  return RGWSI_SysObj_Core::remove(obj_ctx, objv_tracker, obj);
}

具體的緩存刪除操做由CacheManager ObjectCache 執行

bool ObjectCache::remove(const string& name)
{
  RWLock::WLocker l(lock); // 第一步:獲取寫鎖

  if (!enabled) {
    return false;
  }

  // 在cache map中找到指定緩存
  auto iter = cache_map.find(name);
  if (iter == cache_map.end())
    return false;

  ldout(cct, 10) << "removing " << name << " from cache" << dendl;
  ObjectCacheEntry& entry = iter->second;

  // 移除指定ObjectCacheEntry 關聯的全部 chained_entries
  for (auto& kv : entry.chained_entries) {
    kv.first->invalidate(kv.second);
  }

  remove_lru(name, iter->second.lru_iter); // 更新lru 
  cache_map.erase(iter); // cache map 中移除該對象緩存
  return true;
}

以緩存中最多見、最重要的操做read()爲例分析:

int RGWSI_SysObj_Cache::read(RGWSysObjectCtxBase& obj_ctx,
                             GetObjState& read_state,
                             RGWObjVersionTracker *objv_tracker,
                             const rgw_raw_obj& obj,
                             bufferlist *obl, off_t ofs, off_t end,
                             map<string, bufferlist> *attrs,
                             bool raw_attrs,
                             rgw_cache_entry_info *cache_info,
                             boost::optional<obj_version> refresh_version)
{
  rgw_pool pool;
  string oid;
  // 若指定非開始處的offset 讀取,則直接讀取sysobj_core 對象
  if (ofs != 0) {
    return RGWSI_SysObj_Core::read(obj_ctx, read_state, objv_tracker,
                          obj, obl, ofs, end, attrs, raw_attrs,
                          cache_info, refresh_version);
  }

  normalize_pool_and_obj(obj.pool, obj.oid, pool, oid);
  string name = normal_name(pool, oid);

  ObjectCacheInfo info;

  uint32_t flags = (end != 0 ? CACHE_FLAG_DATA : 0);
  if (objv_tracker)
    flags |= CACHE_FLAG_OBJV;
  if (attrs)
    flags |= CACHE_FLAG_XATTRS;

  // 獲取指定name 的cache
  if ((cache.get(name, info, flags, cache_info) == 0) &&
      (!refresh_version || !info.version.compare(&(*refresh_version)))) {
    if (info.status < 0)
      return info.status;

    bufferlist& bl = info.data;

    bufferlist::iterator i = bl.begin();

    obl->clear();

    i.copy_all(*obl);
    if (objv_tracker)
      objv_tracker->read_version = info.version;
    if (attrs) {
      if (raw_attrs) {
        *attrs = info.xattrs;
      } else {
        rgw_filter_attrset(info.xattrs, RGW_ATTR_PREFIX, attrs);
      }
    }
    return obl->length();
  }

  map<string, bufferlist> unfiltered_attrset;
  int r = RGWSI_SysObj_Core::read(obj_ctx, read_state, objv_tracker,
                         obj, obl, ofs, end,
                         (attrs ? &unfiltered_attrset : nullptr),
                         true, /* cache unfiltered attrs */
                         cache_info,
                         refresh_version);
  if (r < 0) {
    // 未讀到該對象時,將該對象加入cache
    if (r == -ENOENT) { // only update ENOENT, we'd rather retry other errors
      info.status = r;
      cache.put(name, info, cache_info);
    }
    return r;
  }

  if (obl->length() == end + 1) {
    /* in this case, most likely object contains more data, we can't cache it */
    flags &= ~CACHE_FLAG_DATA;
  } else {
    bufferptr p(r);
    bufferlist& bl = info.data;
    bl.clear();
    bufferlist::iterator o = obl->begin();
    o.copy_all(bl);
  }

  info.status = 0;
  info.flags = flags;
  if (objv_tracker) {
    info.version = objv_tracker->read_version;
  }
  if (attrs) {
    info.xattrs = std::move(unfiltered_attrset);
    if (raw_attrs) {
      *attrs = info.xattrs;
    } else {
      rgw_filter_attrset(info.xattrs, RGW_ATTR_PREFIX, attrs);
    }
  }
  cache.put(name, info, cache_info);
  return r;
}

CacheManager

CacheManager ObjectCache 負責具體Cache Entries的管理:緩存獲取,緩存移除,LRU 管理

class ObjectCache {
  std::unordered_map<string, ObjectCacheEntry> cache_map;
  std::list<string> lru; // LRU 列表
  unsigned long lru_size; // LRU 表的大小
  unsigned long lru_counter; // 當前LRU 數
  unsigned long lru_window; // rgw_cache_lru_size 的一半大小
  RWLock lock;
  CephContext *cct;

  vector<RGWChainedCache *> chained_cache;

  bool enabled; // watch/notify 的開關
  ceph::timespan expiry; // 緩存過時時間大小
};
緩存獲取
int ObjectCache::get(const string& name, ObjectCacheInfo& info, uint32_t mask, rgw_cache_entry_info *cache_info)
{
  RWLock::RLocker l(lock); // 第一步,先獲取讀鎖

  if (!enabled) {
    return -ENOENT;
  }
  // 獲取指定緩存
  auto iter = cache_map.find(name);
  if (iter == cache_map.end()) {
    ldout(cct, 10) << "cache get: name=" << name << " : miss" << dendl;
    if (perfcounter)
      perfcounter->inc(l_rgw_cache_miss);
    return -ENOENT;
  }
  // 緩存是否已通過期
  // 過時緩存須要從cache map中移除,從LRU 表中移除
  if (expiry.count() &&
       (ceph::coarse_mono_clock::now() - iter->second.info.time_added) > expiry) {
    ldout(cct, 10) << "cache get: name=" << name << " : expiry miss" << dendl;
    lock.unlock();
    lock.get_write(); // 由讀鎖轉爲寫鎖
    // check that wasn't already removed by other thread
    iter = cache_map.find(name);
    if (iter != cache_map.end()) {
      for (auto &kv : iter->second.chained_entries)
        kv.first->invalidate(kv.second);
      remove_lru(name, iter->second.lru_iter);
      cache_map.erase(iter);
    }
    if(perfcounter)
      perfcounter->inc(l_rgw_cache_miss);
    return -ENOENT;
  }

  ObjectCacheEntry *entry = &iter->second;

  // 當前entry 計數距離總計數lru_counter超過LRU 窗口大小,即當前entry 已經落在LRU 表後半段,這時纔去更新entry LRU表
  // [lru window](https://github.com/ceph/ceph/commit/a84cf15f64211c00bc6c95687ff4509d16b1f909)
  if (lru_counter - entry->lru_promotion_ts > lru_window) {
    ldout(cct, 20) << "cache get: touching lru, lru_counter=" << lru_counter
                   << " promotion_ts=" << entry->lru_promotion_ts << dendl;
    lock.unlock();
    lock.get_write(); /* promote lock to writer */

    /* need to redo this because entry might have dropped off the cache */
    iter = cache_map.find(name);
    if (iter == cache_map.end()) {
      ldout(cct, 10) << "lost race! cache get: name=" << name << " : miss" << dendl;
      if(perfcounter) perfcounter->inc(l_rgw_cache_miss);
      return -ENOENT;
    }

    entry = &iter->second;
    /* check again, we might have lost a race here */
    if (lru_counter - entry->lru_promotion_ts > lru_window) {
      touch_lru(name, *entry, iter->second.lru_iter); // 更新緩存LRU
    }
  }

  ObjectCacheInfo& src = iter->second.info;
  if ((src.flags & mask) != mask) {
    ldout(cct, 10) << "cache get: name=" << name << " : type miss (requested=0x"
                   << std::hex << mask << ", cached=0x" << src.flags
                   << std::dec << ")" << dendl;
    if(perfcounter) perfcounter->inc(l_rgw_cache_miss);
    return -ENOENT;
  }
  ldout(cct, 10) << "cache get: name=" << name << " : hit (requested=0x"
                 << std::hex << mask << ", cached=0x" << src.flags
                 << std::dec << ")" << dendl;

  info = src;
  if (cache_info) {
    cache_info->cache_locator = name;
    cache_info->gen = entry->gen;
  }
  if(perfcounter) perfcounter->inc(l_rgw_cache_hit);

  return 0;
}
緩存添加
void ObjectCache::put(const string& name, ObjectCacheInfo& info, rgw_cache_entry_info *cache_info)
{
  RWLock::WLocker l(lock);

  if (!enabled) {
    return;
  }

  ldout(cct, 10) << "cache put: name=" << name << " info.flags=0x"
                 << std::hex << info.flags << std::dec << dendl;

  auto [iter, inserted] = cache_map.emplace(name, ObjectCacheEntry{});
  ObjectCacheEntry& entry = iter->second;
  entry.info.time_added = ceph::coarse_mono_clock::now();
  if (inserted) {
    entry.lru_iter = lru.end();
  }
  ObjectCacheInfo& target = entry.info;

  invalidate_lru(entry);

  entry.chained_entries.clear();
  entry.gen++;

  touch_lru(name, entry, entry.lru_iter);

  target.status = info.status;

  if (info.status < 0) {
    target.flags = 0;
    target.xattrs.clear();
    target.data.clear();
    return;
  }

  if (cache_info) {
    cache_info->cache_locator = name;
    cache_info->gen = entry.gen;
  }

  target.flags |= info.flags;

  if (info.flags & CACHE_FLAG_META)
    target.meta = info.meta;
  else if (!(info.flags & CACHE_FLAG_MODIFY_XATTRS))
    target.flags &= ~CACHE_FLAG_META; // non-meta change should reset meta

  if (info.flags & CACHE_FLAG_XATTRS) {
    target.xattrs = info.xattrs;
    map<string, bufferlist>::iterator iter;
    for (iter = target.xattrs.begin(); iter != target.xattrs.end(); ++iter) {
      ldout(cct, 10) << "updating xattr: name=" << iter->first << " bl.length()=" << iter->second.length() << dendl;
    }
  } else if (info.flags & CACHE_FLAG_MODIFY_XATTRS) {
    map<string, bufferlist>::iterator iter;
    for (iter = info.rm_xattrs.begin(); iter != info.rm_xattrs.end(); ++iter) {
      ldout(cct, 10) << "removing xattr: name=" << iter->first << dendl;
      target.xattrs.erase(iter->first);
    }
    for (iter = info.xattrs.begin(); iter != info.xattrs.end(); ++iter) {
      ldout(cct, 10) << "appending xattr: name=" << iter->first << " bl.length()=" << iter->second.length() << dendl;
      target.xattrs[iter->first] = iter->second;
    }
  }

  if (info.flags & CACHE_FLAG_DATA)
    target.data = info.data;

  if (info.flags & CACHE_FLAG_OBJV)
    target.version = info.version;
}
緩存移除
bool ObjectCache::remove(const string& name)
{
  RWLock::WLocker l(lock); // 第一步,獲取寫鎖

  if (!enabled) {
    return false;
  }

  auto iter = cache_map.find(name);
  if (iter == cache_map.end())
    return false;

  ldout(cct, 10) << "removing " << name << " from cache" << dendl;
  ObjectCacheEntry& entry = iter->second;
  // 移除跟cache entry 關聯的全部chained entries 
  for (auto& kv : entry.chained_entries) {
    kv.first->invalidate(kv.second);
  }
  // 移除LRU 表中的cache object對應項
  remove_lru(name, iter->second.lru_iter);
  cache_map.erase(iter);
  return true;
}
LRU 更新

LRU 表是一個雙向列表 std:list<>,可支持表頭插入、表尾插入。RGW Cache 實如今LRU 表頭

std::list<string> lru;

LRU 移除

void ObjectCache::remove_lru(const string& name,
                 std::list<string>::iterator& lru_iter)
{
  if (lru_iter == lru.end())//肯定是否在LRU 表中
    return;

  lru.erase(lru_iter);// 移除該項
  lru_size--; // LRU 當前size 減一
  lru_iter = lru.end(); //將當前iter 置爲無效
}

touch_lru 負責更新緩存項至LRU 表:

void ObjectCache::touch_lru(const string& name, ObjectCacheEntry& entry,
                std::list<string>::iterator& lru_iter)
{
  // 當前lru size 超過預設值rgw_cache_lru_size,須要先刪除LRU 頭
  while (lru_size > (size_t)cct->_conf->rgw_cache_lru_size) {
    auto iter = lru.begin(); // LRU 表尾項
    if ((*iter).compare(name) == 0) { // 若是當前對象是LRU 是LRU 表尾項,不用立馬顯式刪除,LRU 會根據rgw_cache_lru_size 自動不包含該項
      /*
       * if the entry we're touching happens to be at the lru end, don't remove it,
       * lru shrinking can wait for next time
       */
      break;
    }
    // 移除LRU 表尾項對應的對象緩存
    auto map_iter = cache_map.find(*iter);
    ldout(cct, 10) << "removing entry: name=" << *iter << " from cache LRU" << dendl;
    if (map_iter != cache_map.end()) {
      ObjectCacheEntry& entry = map_iter->second;
      invalidate_lru(entry);
      cache_map.erase(map_iter);
    }
    // 刪除LRU 表尾項,並將當前LRU size 減一
    lru.pop_front();
    lru_size--;
  }

  if (lru_iter == lru.end()) { // lru_iter不在LRU 表中:插入當前項至LRU 表頭(list 尾)
    lru.push_back(name);
    lru_size++;
    lru_iter--;
    ldout(cct, 10) << "adding " << name << " to cache LRU end" << dendl;
  } else { // lru_iter在LRU 表中:移動至當前項至LRU 表頭(list 尾)
    ldout(cct, 10) << "moving " << name << " to cache LRU end" << dendl;
    lru.erase(lru_iter);
    lru.push_back(name);
    lru_iter = lru.end();
    --lru_iter;
  }

  lru_counter++;
  entry.lru_promotion_ts = lru_counter; // 
}

緩存一致性

RGW Cache 屬於分佈式緩存,一般會有多個RGW 實例,緩存須要在各個RGW 實例間分發,且須要保證緩存一致性。
RGW Cache的調用路徑中已經給出,CachingProvider RGWSI_SysObj_Cache 會在服務啓動do_start() 中start notify_svc,並註冊watch_cb 函數。
notify_svc 這個服務的做用就是提供一種watch/notify 機制,以確保緩存一致性。
watch/notify 機制由librados提供。其中,notify rados object 存在default.rgw.control 池中。

[root@umstor14 build]# bin/rados ls -p default.rgw.control
notify.1
notify.6
notify.3
notify.7
notify.2
notify.4
notify.5
notify.0

[root@umstor14 build]# bin/rados -p default.rgw.control stat notify.1
default.rgw.control/notify.1 mtime 2020-01-10 18:59:13.000000, size 0

[root@umstor14 build]# bin/rados -p default.rgw.control stat notify.7
default.rgw.control/notify.7 mtime 2020-01-10 18:59:14.000000, size 0

notify_svc 服務的啓動路徑跟cache_svc 相似:

int RGWServiceInstance::start() ==> virtual int RGWServiceInstance::do_start() ==> int RGWSI_Notify::do_start()

do_start() 會初始化watch:

int RGWSI_Notify::init_watch()
{
  num_watchers = cct->_conf->rgw_num_control_oids; // 有參數rgw_num_control_oids 配置,默認8個 watcher
  bool compat_oid = (num_watchers == 0);

  if (num_watchers <= 0)
    num_watchers = 1;

  watchers = new RGWWatcher *[num_watchers];
  ......
}

在cache op 以後,會執行cache 分發操做distribute_cache():

int RGWSI_SysObj_Cache::distribute_cache(const string& normal_name, const rgw_raw_obj& obj, ObjectCacheInfo& obj_info, int op)
{
  RGWCacheNotifyInfo info;

  info.op = op;

  info.obj_info = obj_info;
  info.obj = obj;
  bufferlist bl;
  encode(info, bl);
  return notify_svc->distribute(normal_name, bl); // 利用notify_svc 分發
}

分發過程:

int RGWSI_Notify::distribute(const string& key, bufferlist& bl)
{
  // 選擇一個notify obj
  RGWSI_RADOS::Obj notify_obj = pick_control_obj(key);

  ldout(cct, 10) << "distributing notification oid=" << notify_obj.get_ref().obj
      << " bl.length()=" << bl.length() << dendl;
  // 執行分發
  return robust_notify(notify_obj, bl);
}

分發細節會在RGW Services -- Notify Service 中說明。

另外,在notify_svc 服務的watcher 的handle_notify()中調用已註冊的回調函數。
watcher 收到notify的更新通知後,會更新本地緩存。

void RGWWatcher::handle_notify()
{
......
    // 調用cache_svc 服務註冊的回調函數
    svc->watch_cb(notify_id, cookie, notifier_id, bl);
    // 向通知者發送確認消息
    bufferlist reply_bl; // empty reply payload
    obj.notify_ack(notify_id, cookie, reply_bl);
......
}

回調函數中根據操做類型,利用CacheManager 完成cache 更新或移除:

int RGWSI_SysObj_Cache::watch_cb(uint64_t notify_id,
                                 uint64_t cookie,
                                 uint64_t notifier_id,
                                 bufferlist& bl)
{
  RGWCacheNotifyInfo info; //cache notify 信息,包含:操做、rgw raw object、obj cache info、offset等

  try {
    auto iter = bl.cbegin();
    decode(info, iter);
  } catch (buffer::end_of_buffer& err) {
    ldout(cct, 0) << "ERROR: got bad notification" << dendl;
    return -EIO;
  } catch (buffer::error& err) {
    ldout(cct, 0) << "ERROR: buffer::error" << dendl;
    return -EIO;
  }

  rgw_pool pool;
  string oid;
  normalize_pool_and_obj(info.obj.pool, info.obj.oid, pool, oid);
  string name = normal_name(pool, oid);
  
  switch (info.op) {
  case UPDATE_OBJ: //利用CacheManager 更新緩存
    cache.put(name, info.obj_info, NULL);
    break;
  case REMOVE_OBJ: //利用CacheManager 移除緩存
    cache.remove(name);
    break;
  default:
    ldout(cct, 0) << "WARNING: got unknown notification op: " << info.op << dendl;
    return -EINVAL;
  }

  return 0;
}

Chained cache

Chained cache 讓user info,bucket info 能夠經過連接原生緩存,得以開啓緩存。

Basically chains bucket info and user info caches to the raw metadata object cache.

binfo_cache = new RGWChainedCacheImpl<bucket_info_entry>;
static RGWChainedCacheImpl<user_info_entry> uinfo_cache;

以user cache 爲例,在開啓RGW Cache後,優先從緩存中獲取:

void rgw_user_init(RGWRados *store)
{
  uinfo_cache.init(store->svc.cache);

  user_meta_handler = new RGWUserMetadataHandler;
  store->meta_mgr->register_handler(user_meta_handler);
}

int rgw_get_user_info_from_index(RGWRados * const store,
                                 const string& key,
                                 const rgw_pool& pool,
                                 RGWUserInfo& info,
                                 RGWObjVersionTracker * const objv_tracker,
                                 real_time * const pmtime)
{
  // 首選嘗試獲取緩存
  if (auto e = uinfo_cache.find(key)) {
    info = e->info;
    if (objv_tracker)
      *objv_tracker = e->objv_tracker;
    if (pmtime)
      *pmtime = e->mtime;
    return 0;
  }
 ......
 // 未能從緩存中獲取,直接從RADOS 集羣中獲取
 // 獲取到以後,更新uinfo 緩存
 uinfo_cache.put(store->svc.cache, key, &e, { &cache_info });
 .......
class RGWChainedCache {
public:
  ......
  struct Entry {
    RGWChainedCache *cache; // 關聯cache
    const string& key; // email/swift_name/access_key/bucket name 
    void *data; // 指向bucket_info_entry或user_info_entry

    Entry(RGWChainedCache *_c, const string& _k, void *_d) : cache(_c), key(_k), data(_d) {}
  };
};

經過sysobj_cache_svc 服務提供chain cache:
將chain_entry添加到chained cache,並和cache_info_entries 指向的ObjectCacheEntry相關聯。

bool RGWChainedCache::put(RGWSI_SysObj_Cache *svc, const string& key, T *entry,
       std::initializer_list<rgw_cache_entry_info *> cache_info_entries) {
    if (!svc) {
      return false;
    }

    Entry chain_entry(this, key, entry);

    /* we need the svc cache to call us under its lock to maintain lock ordering */
    return svc->chain_cache_entry(cache_info_entries, &chain_entry);
  }

bool ObjectCache::chain_cache_entry(std::initializer_list<rgw_cache_entry_info*> cache_info_entries, RGWChainedCache::Entry *chained_entry)
{
  // 確認全部有效ObjectCacheEntry
......
  // 將待添加entry添加到對應chain cache中
  chained_entry->cache->chain_cb(chained_entry->key, chained_entry->data);

  // 將chained entry關聯到指定的全部有效的ObjectCacheEntry
  for (auto entry : entries) {
    entry->chained_entries.push_back(make_pair(chained_entry->cache,
                           chained_entry->key));
  }
......
}

chained cache 依賴於ObjectCache,

更新ObjectCache的成員 vector<RGWChainedCache *> chained_cache:

void ObjectCache::chain_cache(RGWChainedCache *cache);
void ObjectCache::unchain_cache(RGWChainedCache *cache);

RGW Cache 優化方向

前面的測試系統的cache 命中率:"cache_hit": 336,"cache_miss": 135, 336/(336+135)*100% = 71%
緩存系統適合讀多寫少的場景。如何在這種場景下,提升RGW Cache 的命中率,如下方向能夠考慮:

  • 將緩存粒度設計的更細?
  • 增大緩存容量(這個已經能夠根據實際配置)

References

相關文章
相關標籤/搜索