根據上一篇《Netty4.x 源碼實戰系列(二):服務端bind流程詳解》所述,在進行服務端開發時,必須經過ServerBootstrap引導類的channel方法來指定channel類型, channel方法的調用其實就是實例化了一個用於生成此channel類型對象的工廠對象。 而且在bind調用後,會調用此工廠對象來生成一個新channel。java
本篇將經過NioServerSocketChannel實例化過程,來深刻剖析NioServerSocketChannel。segmentfault
在開始代碼分析以前,咱們先看一下NioServerSocketChannel的類繼承結構圖:socket
在綁定偵聽端口過程當中,咱們調用了AbstractBootstrap的initAndRegister方法來完成channel的建立與初始化,channel實例化代碼以下:ide
channelFactory.newChannel()
而channelFactory對象是咱們經過ServerBootstrap.channel方法的調用生成的oop
public B channel(Class<? extends C> channelClass) { if (channelClass == null) { throw new NullPointerException("channelClass"); } return channelFactory(new ReflectiveChannelFactory<C>(channelClass)); }
經過代碼可知,此工廠對象是ReflectiveChannelFactory實例this
public class ReflectiveChannelFactory<T extends Channel> implements ChannelFactory<T> { private final Class<? extends T> clazz; public ReflectiveChannelFactory(Class<? extends T> clazz) { if (clazz == null) { throw new NullPointerException("clazz"); } this.clazz = clazz; } @Override public T newChannel() { try { return clazz.getConstructor().newInstance(); } catch (Throwable t) { throw new ChannelException("Unable to create Channel from class " + clazz, t); } } }
因此 channelFactory.newChannel() 實例化其實就是NioServerSocketChannel無參構造方法反射而成。spa
咱們先看一下NioServerSocketChannel的無參構造代碼代理
public NioServerSocketChannel() { this(newSocket(DEFAULT_SELECTOR_PROVIDER)); }
無參構造方法中有兩個關鍵點:
一、使用默認的多路複用器輔助類 DEFAULT_SELECTOR_PROVIDERrest
private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider();
二、經過newSocket建立ServerSocketChannelnetty
private static ServerSocketChannel newSocket(SelectorProvider provider) { try { return provider.openServerSocketChannel(); } catch (IOException e) { throw new ChannelException( "Failed to open a server socket.", e); } }
咱們將newSocket生成的ServerSocketChannel對象繼續傳遞給本類中的NioServerSocketChannel(ServerSocketChannel channel)構造方法
public NioServerSocketChannel(ServerSocketChannel channel) { super(null, channel, SelectionKey.OP_ACCEPT); config = new NioServerSocketChannelConfig(this, javaChannel().socket()); }
在其內部,咱們會調用父類AbstractNioMessageChannel的構造方法:
protected AbstractNioMessageChannel(Channel parent, SelectableChannel ch, int readInterestOp) { super(parent, ch, readInterestOp); }
由於是服務端新生成的channel,第一個參數指定爲null,表示沒有父channel,第二個參數指定爲ServerSocketChannel,第三個參數指定ServerSocketChannel關心的事件類型爲SelectionKey.OP_ACCEPT。
在AbstractNioMessageChannel內部會繼續調用父類AbstractNioChannel的構造方法:
protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) { // 繼續調用父類構造方法 super(parent); // 將ServerSocketChannel對象保存 this.ch = ch; // 設置關心的事件 this.readInterestOp = readInterestOp; try { // 設置當前通道爲非阻塞的 ch.configureBlocking(false); } catch (IOException e) { try { ch.close(); } catch (IOException e2) { if (logger.isWarnEnabled()) { logger.warn( "Failed to close a partially initialized socket.", e2); } } throw new ChannelException("Failed to enter non-blocking mode.", e); } }
在AbstractNioChannel中作了下面幾件事:
一、繼續調用父類AbstractChannel(Channel parent)構造方法;
二、經過this.ch = ch 保存ServerSocketChannel, 由於NioServerSocketChannel是Netty封裝的對象,而ServerSocketChannel是有前面默認selector_provider生成的,是java nio的, 其實「this.ch = ch」能夠被認爲是綁定java nio服務端通道至netty對象中;
三、設置ServerSocketChannel關心的事件類型;
四、設置ServerSocketChannel爲非阻塞的(熟悉Java NIO的都知道若是不設置爲false,啓動多路複用器會報異常)
咱們再看一下AbstractChannel(Channel parent)的內部代碼細節
protected AbstractChannel(Channel parent) { this.parent = parent; id = newId(); unsafe = newUnsafe(); pipeline = newChannelPipeline(); }
此構造方法中,主要作了三件事:
一、給channel生成一個新的id
二、經過newUnsafe初始化channel的unsafe屬性
三、newChannelPipeline初始化channel的pipeline屬性
id的生成咱們就不細究了,咱們主要看看newUnsafe 及 newChannelPipeline是如何建立unsafe對象及pipeline對象的。
newUnsafe()方法調用
在AbstractChannel類中,newUnsafe()是一個抽象方法
protected abstract AbstractUnsafe newUnsafe();
經過上面的類繼承結構圖,咱們找到AbstractNioMessageChannel類中有newUnsafe()的實現
@Override protected AbstractNioUnsafe newUnsafe() { return new NioMessageUnsafe(); }
此方法返回一個NioMessageUnsafe實例對象,而NioMessageUnsafe是AbstractNioMessageChannel的內部類
private final class NioMessageUnsafe extends AbstractNioUnsafe { private final List<Object> readBuf = new ArrayList<Object>(); @Override public void read() { assert eventLoop().inEventLoop(); final ChannelConfig config = config(); final ChannelPipeline pipeline = pipeline(); final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle(); allocHandle.reset(config); boolean closed = false; Throwable exception = null; try { try { do { int localRead = doReadMessages(readBuf); if (localRead == 0) { break; } if (localRead < 0) { closed = true; break; } allocHandle.incMessagesRead(localRead); } while (allocHandle.continueReading()); } catch (Throwable t) { exception = t; } int size = readBuf.size(); for (int i = 0; i < size; i ++) { readPending = false; pipeline.fireChannelRead(readBuf.get(i)); } readBuf.clear(); allocHandle.readComplete(); pipeline.fireChannelReadComplete(); if (exception != null) { closed = closeOnReadError(exception); pipeline.fireExceptionCaught(exception); } if (closed) { inputShutdown = true; if (isOpen()) { close(voidPromise()); } } } finally { if (!readPending && !config.isAutoRead()) { removeReadOp(); } } } }
NioMessageUnsafe 只覆蓋了 父類AbstractNioUnsafe中的read方法,經過NioMessageUnsafe 及其父類的代碼即可以知道, 其實unsafe對象是真正的負責底層channel的鏈接/讀/寫等操做的,unsafe就比如一個底層channel操做的代理對象。
newChannelPipeline()方法調用
newChannelPipeline直接在AbstractChannel內實現
protected DefaultChannelPipeline newChannelPipeline() { return new DefaultChannelPipeline(this); }
該方法返回了建立了一個DefaultChannelPipeline對象
protected DefaultChannelPipeline(Channel channel) { this.channel = ObjectUtil.checkNotNull(channel, "channel"); succeededFuture = new SucceededChannelFuture(channel, null); voidPromise = new VoidChannelPromise(channel, true); tail = new TailContext(this); head = new HeadContext(this); head.next = tail; tail.prev = head; }
此DefaultChannelPipeline對象會綁定NioServerSocketChannel對象,並初始化了HeadContext及TailContext對象。
tail = new TailContext(this); head = new HeadContext(this);
head及tail初始化完成後,它們會相互鏈接。
經過上面的代碼能夠得出,pipeline就是一個雙向鏈表。關於Pipeline的更多細節,此處不作贅述,歡迎你們關注下一篇文章。
咱們在回到NioServerSocketChannel的構造方法 NioServerSocketChannel(ServerSocketChannel channel)
public NioServerSocketChannel(ServerSocketChannel channel) { super(null, channel, SelectionKey.OP_ACCEPT); config = new NioServerSocketChannelConfig(this, javaChannel().socket()); }
父類構造方法調用完成後,NioServerSocketChannel還要初始化一下本身的配置對象
config = new NioServerSocketChannelConfig(this, javaChannel().socket());
NioServerSocketChannelConfig是NioServerSocketChannel的內部類
private final class NioServerSocketChannelConfig extends DefaultServerSocketChannelConfig { private NioServerSocketChannelConfig(NioServerSocketChannel channel, ServerSocket javaSocket) { super(channel, javaSocket); } @Override protected void autoReadCleared() { clearReadPending(); } }
而NioServerSocketChannelConfig 又是繼承自DefaultServerSocketChannelConfig,經過代碼分析,此config對象就是就會對底層ServerSocket一些配置設置行爲的封裝。
至此NioServerSocketChannel對象應該建立完成了~
總結:
一、NioServerSocketChannel對象內部綁定了Java NIO建立的ServerSocketChannel對象;二、Netty中,每一個channel都有一個unsafe對象,此對象封裝了Java NIO底層channel的操做細節;
三、Netty中,每一個channel都有一個pipeline對象,此對象就是一個雙向鏈表;