Netty4.x 源碼實戰系列(一):ServerBootstrap 與 Bootstrap 初探

從Java1.4開始, Java引入了non-blocking IO,簡稱NIO。NIO與傳統socket最大的不一樣就是引入了Channel和多路複用selector的概念。傳統的socket是基於stream的,它是單向的,有InputStream表示read和OutputStream表示寫。而Channel是雙工的,既支持讀也支持寫,channel的讀/寫都是面向Buffer。 NIO中引入的多路複用Selector機制(若是是linux系統,則應用的epoll事件通知機制)可以使一個線程同時監聽多個Channel上發生的事件。 雖然Java NIO相比於以往確實是一個大的突破,可是若是要真正上手進行開發,且想要開發出好的一個服務端網絡程序,那麼你得要花費一點功夫了,畢竟Java NIO只是提供了一大堆的API而已,對於通常的軟件開發人員來講只能呵呵了。所以,社區中就涌現了不少基於Java NIO的網絡應用框架,其中以Apache的Mina,以及Netty最爲出名,從本篇開始咱們將深刻的分析一下Netty的內部實現細節 。react

本系列是基於Netty4.1.18這個版本。

在分析源碼以前,咱們仍是先看看Netty官方的樣例代碼,瞭解一下Netty通常是如何進行服務端及客戶端開發的。linux

Netty服務端示例:git

EventLoopGroup bossGroup = new NioEventLoopGroup(); // (1)
EventLoopGroup workerGroup = new NioEventLoopGroup();
try {
    ServerBootstrap b = new ServerBootstrap(); // (2)
    b.group(bossGroup, workerGroup)  // (3)
     .channel(NioServerSocketChannel.class) // (4)
     .handler(new LoggingHandler())    // (5)
     .childHandler(new ChannelInitializer<SocketChannel>() { // (6)
         @Override
         public void initChannel(SocketChannel ch) throws Exception {
             ch.pipeline().addLast(new DiscardServerHandler());
         }
     })
     .option(ChannelOption.SO_BACKLOG, 128)          // (7)
     .childOption(ChannelOption.SO_KEEPALIVE, true); // (8)
    
     // Bind and start to accept incoming connections.
     ChannelFuture f = b.bind(port).sync(); // (9)
    
     // Wait until the server socket is closed.
     // In this example, this does not happen, but you can do that to gracefully
     // shut down your server.
     f.channel().closeFuture().sync();
} finally {
    workerGroup.shutdownGracefully();
    bossGroup.shutdownGracefully();
}

上面這段代碼展現了服務端的一個基本步驟:github

一、 初始化用於Acceptor的主"線程池"以及用於I/O工做的從"線程池";
二、 初始化ServerBootstrap實例, 此實例是netty服務端應用開發的入口,也是本篇介紹的重點, 下面咱們會深刻分析;
三、 經過ServerBootstrap的group方法,設置(1)中初始化的主從"線程池";
四、 指定通道channel的類型,因爲是服務端,故而是NioServerSocketChannel;
五、 設置ServerSocketChannel的處理器(此處不詳述,後面的系列會進行深刻分析)
六、 設置子通道也就是SocketChannel的處理器, 其內部是實際業務開發的"主戰場"(此處不詳述,後面的系列會進行深刻分析)
七、 配置ServerSocketChannel的選項
八、 配置子通道也就是SocketChannel的選項
九、 綁定並偵聽某個端口bootstrap

接着,咱們再看看客戶端是如何開發的:promise

Netty客戶端示例:網絡

public class TimeClient {
    public static void main(String[] args) throws Exception {
        String host = args[0];
        int port = Integer.parseInt(args[1]);
        EventLoopGroup workerGroup = new NioEventLoopGroup(); // (1)
        
        try {
            Bootstrap b = new Bootstrap(); // (2)
            b.group(workerGroup); // (3)
            b.channel(NioSocketChannel.class); // (4)
            b.option(ChannelOption.SO_KEEPALIVE, true); // (5)
            b.handler(new ChannelInitializer<SocketChannel>() { // (6)
                @Override
                public void initChannel(SocketChannel ch) throws Exception {
                    ch.pipeline().addLast(new TimeClientHandler());
                }
            });
            
            // Start the client.
            ChannelFuture f = b.connect(host, port).sync(); // (7)

            // Wait until the connection is closed.
            f.channel().closeFuture().sync();
        } finally {
            workerGroup.shutdownGracefully();
        }
    }
}

客戶端的開發步驟和服務端都差很少:app

一、 初始化用於鏈接及I/O工做的"線程池";
二、 初始化Bootstrap實例, 此實例是netty客戶端應用開發的入口,也是本篇介紹的重點, 下面咱們會深刻分析;
三、 經過Bootstrap的group方法,設置(1)中初始化的"線程池";
四、 指定通道channel的類型,因爲是客戶端,故而是NioSocketChannel;
五、 設置SocketChannel的選項(此處不詳述,後面的系列會進行深刻分析);
六、 設置SocketChannel的處理器, 其內部是實際業務開發的"主戰場"(此處不詳述,後面的系列會進行深刻分析);
七、 鏈接指定的服務地址;框架

經過對上面服務端及客戶端代碼分析,Bootstrap是Netty應用開發的入口,若是想要理解Netty內部的實現細節,那麼有必要先了解一下Bootstrap內部的實現機制。socket

首先咱們先看一下ServerBootstrap及Bootstrap的類繼承結構圖:
bootstrap類繼承結構圖

經過類圖咱們知道AbstractBootstrap類是ServerBootstrap及Bootstrap的基類,咱們先看一下AbstractBootstrap類的主要代碼:

public abstract class AbstractBootstrap<B extends AbstractBootstrap<B, C>, C extends Channel> implements Cloneable {

    volatile EventLoopGroup group;
    private volatile ChannelFactory<? extends C> channelFactory;
    private final Map<ChannelOption<?>, Object> options = new LinkedHashMap<ChannelOption<?>, Object>();
    private final Map<AttributeKey<?>, Object> attrs = new LinkedHashMap<AttributeKey<?>, Object>();
    private volatile ChannelHandler handler;

    
    public B group(EventLoopGroup group) {
        if (group == null) {
            throw new NullPointerException("group");
        }
        if (this.group != null) {
            throw new IllegalStateException("group set already");
        }
        this.group = group;
        return self();
    }

    private B self() {
        return (B) this;
    }

    public B channel(Class<? extends C> channelClass) {
        if (channelClass == null) {
            throw new NullPointerException("channelClass");
        }
        return channelFactory(new ReflectiveChannelFactory<C>(channelClass));
    }

    @Deprecated
    public B channelFactory(ChannelFactory<? extends C> channelFactory) {
        if (channelFactory == null) {
            throw new NullPointerException("channelFactory");
        }
        if (this.channelFactory != null) {
            throw new IllegalStateException("channelFactory set already");
        }

        this.channelFactory = channelFactory;
        return self();
    }

    public B channelFactory(io.netty.channel.ChannelFactory<? extends C> channelFactory) {
        return channelFactory((ChannelFactory<C>) channelFactory);
    }

    public <T> B option(ChannelOption<T> option, T value) {
        if (option == null) {
            throw new NullPointerException("option");
        }
        if (value == null) {
            synchronized (options) {
                options.remove(option);
            }
        } else {
            synchronized (options) {
                options.put(option, value);
            }
        }
        return self();
    }

    public <T> B attr(AttributeKey<T> key, T value) {
        if (key == null) {
            throw new NullPointerException("key");
        }
        if (value == null) {
            synchronized (attrs) {
                attrs.remove(key);
            }
        } else {
            synchronized (attrs) {
                attrs.put(key, value);
            }
        }
        return self();
    }

    public B validate() {
        if (group == null) {
            throw new IllegalStateException("group not set");
        }
        if (channelFactory == null) {
            throw new IllegalStateException("channel or channelFactory not set");
        }
        return self();
    }

    public ChannelFuture bind(int inetPort) {
        return bind(new InetSocketAddress(inetPort));
    }

    public ChannelFuture bind(SocketAddress localAddress) {
        validate();
        if (localAddress == null) {
            throw new NullPointerException("localAddress");
        }
        return doBind(localAddress);
    }

    private ChannelFuture doBind(final SocketAddress localAddress) {
        final ChannelFuture regFuture = initAndRegister();
        final Channel channel = regFuture.channel();
        if (regFuture.cause() != null) {
            return regFuture;
        }

        if (regFuture.isDone()) {
            // At this point we know that the registration was complete and successful.
            ChannelPromise promise = channel.newPromise();
            doBind0(regFuture, channel, localAddress, promise);
            return promise;
        } else {
            // Registration future is almost always fulfilled already, but just in case it's not.
            final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
            regFuture.addListener(new ChannelFutureListener() {
                @Override
                public void operationComplete(ChannelFuture future) throws Exception {
                    Throwable cause = future.cause();
                    if (cause != null) {
                        // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
                        // IllegalStateException once we try to access the EventLoop of the Channel.
                        promise.setFailure(cause);
                    } else {
                        // Registration was successful, so set the correct executor to use.
                        // See https://github.com/netty/netty/issues/2586
                        promise.registered();

                        doBind0(regFuture, channel, localAddress, promise);
                    }
                }
            });
            return promise;
        }
    }

    final ChannelFuture initAndRegister() {
        Channel channel = null;
        try {
            channel = channelFactory.newChannel();
            init(channel);
        } catch (Throwable t) {
            if (channel != null) {
                // channel can be null if newChannel crashed (eg SocketException("too many open files"))
                channel.unsafe().closeForcibly();
            }
            // as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
            return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);
        }

        ChannelFuture regFuture = config().group().register(channel);
        if (regFuture.cause() != null) {
            if (channel.isRegistered()) {
                channel.close();
            } else {
                channel.unsafe().closeForcibly();
            }
        }

        return regFuture;
    }

    abstract void init(Channel channel) throws Exception;

    private static void doBind0(
            final ChannelFuture regFuture, final Channel channel,
            final SocketAddress localAddress, final ChannelPromise promise) {

        // This method is invoked before channelRegistered() is triggered.  Give user handlers a chance to set up
        // the pipeline in its channelRegistered() implementation.
        channel.eventLoop().execute(new Runnable() {
            @Override
            public void run() {
                if (regFuture.isSuccess()) {
                    channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
                } else {
                    promise.setFailure(regFuture.cause());
                }
            }
        });
    }

    public B handler(ChannelHandler handler) {
        if (handler == null) {
            throw new NullPointerException("handler");
        }
        this.handler = handler;
        return self();
    }public abstract AbstractBootstrapConfig<B, C> config();

}

如今咱們以示例代碼爲出發點,來詳細分析一下引導類內部實現細節:

一、 首先看看服務端的b.group(bossGroup, workerGroup):

調用ServerBootstrap的group方法,設置react模式的主線程池 以及 IO 操做線程池,ServerBootstrap中的group代碼以下:

public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup) {
        super.group(parentGroup);
        if (childGroup == null) {
            throw new NullPointerException("childGroup");
        }
        if (this.childGroup != null) {
            throw new IllegalStateException("childGroup set already");
        }
        this.childGroup = childGroup;
        return this;
    }

在group方法中,會繼續調用父類的group方法,而經過類繼承圖咱們知道,super.group(parentGroup)其實調用的就是AbstractBootstrap的group方法。AbstractBootstrap中group代碼以下:

public B group(EventLoopGroup group) {
        if (group == null) {
            throw new NullPointerException("group");
        }
        if (this.group != null) {
            throw new IllegalStateException("group set already");
        }
        this.group = group;
        return self();
    }

經過以上分析,咱們知道了AbstractBootstrap中定義了主線程池group的引用,而子線程池childGroup的引用是定義在ServerBootstrap中。

當咱們查看客戶端Bootstrap的group方法時,咱們發現,其是直接調用的父類AbstractBoostrap的group方法。

二、示例代碼中的 channel()方法

不管是服務端仍是客戶端,channel調用的都是基類的channel方法,其實現細節以下:

public B channel(Class<? extends C> channelClass) {
    if (channelClass == null) {
        throw new NullPointerException("channelClass");
    }
    return channelFactory(new ReflectiveChannelFactory<C>(channelClass));
}
public B channelFactory(ChannelFactory<? extends C> channelFactory) {
    if (channelFactory == null) {
        throw new NullPointerException("channelFactory");
    }
    if (this.channelFactory != null) {
        throw new IllegalStateException("channelFactory set already");
    }

    this.channelFactory = channelFactory;
    return self();
}

咱們發現,其實channel方法內部,只是初始化了一個用於生產指定channel類型的工廠實例。

三、option / handler / attr 方法

option: 設置通道的選項參數, 對於服務端而言就是ServerSocketChannel, 客戶端而言就是SocketChannel;

  handler: 設置主通道的處理器, 對於服務端而言就是ServerSocketChannel,也就是用來處理Acceptor的操做;

      對於客戶端的SocketChannel,主要是用來處理 業務操做;

attr: 設置通道的屬性;

 option / handler / attr方法都定義在AbstractBootstrap中, 因此服務端和客戶端的引導類方法調用都是調用的父類的對應方法。

四、childHandler / childOption / childAttr 方法(只有服務端ServerBootstrap纔有child類型的方法)

  對於服務端而言,有兩種通道須要處理, 一種是ServerSocketChannel:用於處理用戶鏈接的accept操做, 另外一種是SocketChannel,表示對應客戶端鏈接。而對於客戶端,通常都只有一種channel,也就是SocketChannel。

  所以以child開頭的方法,都定義在ServerBootstrap中,表示處理或配置服務端接收到的對應客戶端鏈接的SocketChannel通道。

  childHandler / childOption / childAttr 在ServerBootstrap中的對應代碼以下:

public ServerBootstrap childHandler(ChannelHandler childHandler) {
    if (childHandler == null) {
        throw new NullPointerException("childHandler");
    }
    this.childHandler = childHandler;
    return this;
}
public <T> ServerBootstrap childOption(ChannelOption<T> childOption, T value) {
    if (childOption == null) {
        throw new NullPointerException("childOption");
    }
    if (value == null) {
        synchronized (childOptions) {
            childOptions.remove(childOption);
        }
    } else {
        synchronized (childOptions) {
            childOptions.put(childOption, value);
        }
    }
    return this;
}
public <T> ServerBootstrap childAttr(AttributeKey<T> childKey, T value) {
    if (childKey == null) {
        throw new NullPointerException("childKey");
    }
    if (value == null) {
        childAttrs.remove(childKey);
    } else {
        childAttrs.put(childKey, value);
    }
    return this;
}

至此,引導類的屬性配置都設置完畢了。

本篇總結:

一、服務端由兩種線程池,用於Acceptor的React主線程和用於I/O操做的React從線程池; 客戶端只有用於鏈接及IO操做的React的主線程池;

二、ServerBootstrap中定義了服務端React的"從線程池"對應的相關配置,都是以child開頭的屬性。 而用於"主線程池"channel的屬性都定義在AbstractBootstrap中;

本篇只是簡單介紹了一下引導類的配置屬性, 下一篇我將詳細介紹服務端引導類的Bind過程分析。

相關文章
相關標籤/搜索