使用 Python 和百度語音識別生成視頻字幕

從視頻中提取音頻

安裝 moviepyhtml

pip install moviepy

相關代碼:python

audio_file = work_path + '\\out.wav'
video = VideoFileClip(video_file)
video.audio.write_audiofile(audio_file,ffmpeg_params=['-ar','16000','-ac','1'])

根據靜音對音頻分段

使用音頻庫 pydub,安裝:json

pip install pydub

第一種方法:markdown

# 這裏silence_thresh是認定小於-70dBFS如下的爲silence,發現小於 sound.dBFS * 1.3 部分超過 700毫秒,就進行拆分。這樣子分割成一段一段的。
sounds = split_on_silence(sound, min_silence_len = 500, silence_thresh= sound.dBFS * 1.3)


sec = 0
for i in range(len(sounds)):
    s = len(sounds[i])
    sec += s
print('split duration is ', sec)
print('dBFS: {0}, max_dBFS: {1}, duration: {2}, split: {3}'.format(round(sound.dBFS,2),round(sound.max_dBFS,2),sound.duration_seconds,len(sounds)))

圖片

感受分割的時間不對,很差定位,咱們換一種方法:app

# 經過搜索靜音的方法將音頻分段
# 參考:https://wqian.net/blog/2018/1128-python-pydub-split-mp3-index.html
timestamp_list = detect_nonsilent(sound,500,sound.dBFS*1.3,1)
 
for i in range(len(timestamp_list)):
    d = timestamp_list[i][1] - timestamp_list[i][0]
    print("Section is :", timestamp_list[i], "duration is:", d)
print('dBFS: {0}, max_dBFS: {1}, duration: {2}, split: {3}'.format(round(sound.dBFS,2),round(sound.max_dBFS,2),sound.duration_seconds,len(timestamp_list)))

輸出結果以下:
圖片
ide

感受這樣好處理一些post

使用百度語音識別

如今百度智能雲平臺建立一個應用,獲取 API Key 和 Secret Key:測試

圖片

獲取 Access Token

使用百度 AI 產品須要受權,必定量是免費的,生成字幕夠用了。fetch

'''
百度智能雲獲取 Access Token
'''
def fetch_token():
    params = {'grant_type': 'client_credentials',
              'client_id': API_KEY,
              'client_secret': SECRET_KEY}
    post_data = urlencode(params)
    if (IS_PY3):
        post_data = post_data.encode( 'utf-8')
    req = Request(TOKEN_URL, post_data)
    try:
        f = urlopen(req)
        result_str = f.read()
    except URLError as err:
        print('token http response http code : ' + str(err.errno))
        result_str = err.reason
    if (IS_PY3):
        result_str =  result_str.decode()


    print(result_str)
    result = json.loads(result_str)
    print(result)
    if ('access_token' in result.keys() and 'scope' in result.keys()):
        print(SCOPE)
        if SCOPE and (not SCOPE in result['scope'].split(' ')):  # SCOPE = False 忽略檢查
            raise DemoError('scope is not correct')
        print('SUCCESS WITH TOKEN: %s  EXPIRES IN SECONDS: %s' % (result['access_token'], result['expires_in']))
        return result['access_token']
    else:
        raise DemoError('MAYBE API_KEY or SECRET_KEY not correct: access_token or scope not found in token response')

使用 Raw 數據進行合成

這裏使用百度語音極速版來合成文字,由於官方介紹專有GPU服務集羣,識別響應速度較標準版API提高2倍及識別準確率提高15%。適用於近場短語音交互,如手機語音搜索、聊天輸入等場景。 支持上傳完整的錄音文件,錄音文件時長不超過60秒。實時返回識別結果網站

def asr_raw(speech_data, token):
    length = len(speech_data)
    if length == 0:
        # raise DemoError('file %s length read 0 bytes' % AUDIO_FILE)
        raise DemoError('file length read 0 bytes')


    params = {'cuid': CUID, 'token': token, 'dev_pid': DEV_PID}
    #測試自訓練平臺須要打開如下信息
    #params = {'cuid': CUID, 'token': token, 'dev_pid': DEV_PID, 'lm_id' : LM_ID}
    params_query = urlencode(params)


    headers = {
        'Content-Type': 'audio/' + FORMAT + '; rate=' + str(RATE),
        'Content-Length': length
    }


    url = ASR_URL + "?" + params_query
    # print post_data
    req = Request(ASR_URL + "?" + params_query, speech_data, headers)
    try:
        begin = timer()
        f = urlopen(req)
        result_str = f.read()
        # print("Request time cost %f" % (timer() - begin))
    except  URLError as err:
        # print('asr http response http code : ' + str(err.errno))
        result_str = err.reason


    if (IS_PY3):
        result_str = str(result_str, 'utf-8')
    return result_str

生成字幕

字幕格式: https://www.cnblogs.com/tocy/p/subtitle-format-srt.html

生成字幕其實就是語音識別的應用,將識別後的內容按照 srt 字幕格式組裝起來就 OK 了。具體字幕格式的內容能夠參考上面的文章,代碼以下:

idx = 0
for i in range(len(timestamp_list)):
    d = timestamp_list[i][1] - timestamp_list[i][0]
    data = sound[timestamp_list[i][0]:timestamp_list[i][1]].raw_data
    str_rst = asr_raw(data, token)
    result = json.loads(str_rst)
    # print("rst is ", result)
    # print("rst is ", rst['err_no'][0])


    if result['err_no'] == 0:
        text.append('{0}\n{1} --> {2}\n'.format(idx, format_time(timestamp_list[i][0]/ 1000), format_time(timestamp_list[i][1]/ 1000)))
        text.append( result['result'][0])
        text.append('\n')
        idx = idx + 1
        print(format_time(timestamp_list[i][0]/ 1000), "txt is ", result['result'][0])
with open(srt_file,"r+") as f:
    f.writelines(text)

總結

我在視頻網站下載了一個視頻來做測試,極速模式從速度和識別率來講都是最好的,感受比網易見外平臺還好用。

使用百度語音識別生成字幕

發佈了200 篇原創文章 · 獲贊 71 · 訪問量 5萬+
相關文章
相關標籤/搜索