在解決一些簡單的分類問題時,線性迴歸與邏輯迴歸就足以應付,但面對更加複雜的問題時(例如對圖片中車的類型進行識別),運用以前的線性模型可能就得不到理想的結果,並且因爲更大的數據量,以前方法的計算量也會變得異常龐大。所以咱們須要學習一個非線性系統:神經網絡。算法
我在學習時,主要經過Andrew Ng教授提供的網絡,並且文中多處都有借鑑Andrew Ng教授在mooc提供的資料。網絡
轉載請註明出處:http://blog.csdn.net/u010278305函數
神經網絡在解決一些複雜的非線性分類問題時,相對於線性迴歸、邏輯迴歸,都被證實是一個更好的算法。其實神經網絡也能夠看作的邏輯迴歸的組合(疊加,級聯等)。
oop
一個典型神經網絡的模型以下圖所示:學習
上述模型由3個部分組成:輸入層、隱藏層、輸出層。其中輸入層輸入特徵值,輸出層的輸出做爲咱們分類的依據。例如一個20*20大小的手寫數字圖片的識別舉例,那麼輸入層的輸入即可以是20*20=400個像素點的像素值,即模型中的a1;輸出層的輸出即可以看作是該幅圖片是0到9其中某個數字的機率。而隱藏層、輸出層中的每一個節點其實均可以看作是邏輯迴歸獲得的。邏輯迴歸的模型能夠看作這樣(以下圖所示):this
有了神經網絡的模型,咱們的目的就是求解模型裏邊的參數theta,爲此咱們還需知道該模型的代價函數以及每個節點的「梯度值」。.net
代價函數的定義以下:code
代價函數關於每個節點處theta的梯度能夠用反向傳播算法計算出來。反向傳播算法的思想是因爲咱們沒法直觀的獲得隱藏層的輸出,但咱們已知輸出層的輸出,經過反向傳播,倒退其參數。orm
咱們以如下模型舉例,來講明反向傳播的思路、過程:blog
該模型與給出的第一個模型不一樣的是,它具備兩個隱藏層。
爲了熟悉這個模型,咱們須要先了解前向傳播的過程,對於此模型,前向傳播的過程以下:
其中,a1,z2等參數的意義能夠參照本文給出的第一個神經網絡模型,類比得出。
而後咱們定義偏差delta符號具備以下含義(以後推導梯度要用):
偏差delta的計算過程以下:
而後咱們經過反向傳播算法求得節點的梯度,反向傳播算法的過程以下:
有了代價函數與梯度函數,咱們能夠先用數值的方法檢測咱們的梯度結果。以後咱們就能夠像以前那樣調用matlab的fminunc函數求得最優的theta參數。
須要注意的是,在初始化theta參數時,須要賦予theta隨機值,而不能是固定爲0或是什麼,這就避免了訓練以後,每一個節點的參數都是同樣的。
下面給出計算代價與梯度的代碼:
function [J grad] = nnCostFunction(nn_params, ... input_layer_size, ... hidden_layer_size, ... num_labels, ... X, y, lambda) %NNCOSTFUNCTION Implements the neural network cost function for a two layer %neural network which performs classification % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ... % X, y, lambda) computes the cost and gradient of the neural network. The % parameters for the neural network are "unrolled" into the vector % nn_params and need to be converted back into the weight matrices. % % The returned parameter grad should be a "unrolled" vector of the % partial derivatives of the neural network. % % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices % for our 2 layer neural network Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1)); % Setup some useful variables m = size(X, 1); % You need to return the following variables correctly J = 0; Theta1_grad = zeros(size(Theta1)); Theta2_grad = zeros(size(Theta2)); % ====================== YOUR CODE HERE ====================== % Instructions: You should complete the code by working through the % following parts. % % Part 1: Feedforward the neural network and return the cost in the % variable J. After implementing Part 1, you can verify that your % cost function computation is correct by verifying the cost % computed in ex4.m % % Part 2: Implement the backpropagation algorithm to compute the gradients % Theta1_grad and Theta2_grad. You should return the partial derivatives of % the cost function with respect to Theta1 and Theta2 in Theta1_grad and % Theta2_grad, respectively. After implementing Part 2, you can check % that your implementation is correct by running checkNNGradients % % Note: The vector y passed into the function is a vector of labels % containing values from 1..K. You need to map this vector into a % binary vector of 1's and 0's to be used with the neural network % cost function. % % Hint: We recommend implementing backpropagation using a for-loop % over the training examples if you are implementing it for the % first time. % % Part 3: Implement regularization with the cost function and gradients. % % Hint: You can implement this around the code for % backpropagation. That is, you can compute the gradients for % the regularization separately and then add them to Theta1_grad % and Theta2_grad from Part 2. % J_tmp=zeros(m,1); for i=1:m y_vec=zeros(num_labels,1); y_vec(y(i))=1; a1 = [ones(1, 1) X(i,:)]'; z2=Theta1*a1; a2=sigmoid(z2); a2=[ones(1,size(a2,2)); a2]; z3=Theta2*a2; a3=sigmoid(z3); hThetaX=a3; J_tmp(i)=sum(-y_vec.*log(hThetaX)-(1-y_vec).*log(1-hThetaX)); end J=1/m*sum(J_tmp); J=J+lambda/(2*m)*(sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2))); Delta1 = zeros( hidden_layer_size, (input_layer_size + 1)); Delta2 = zeros( num_labels, (hidden_layer_size + 1)); for t=1:m y_vec=zeros(num_labels,1); y_vec(y(t))=1; a1 = [1 X(t,:)]'; z2=Theta1*a1; a2=sigmoid(z2); a2=[ones(1,size(a2,2)); a2]; z3=Theta2*a2; a3=sigmoid(z3); delta_3=a3-y_vec; gz2=[0;sigmoidGradient(z2)]; delta_2=Theta2'*delta_3.*gz2; delta_2=delta_2(2:end); Delta2=Delta2+delta_3*a2'; Delta1=Delta1+delta_2*a1'; end Theta1_grad=1/m*Delta1; Theta2_grad=1/m*Delta2; Theta1(:,1)=0; Theta1_grad=Theta1_grad+lambda/m*Theta1; Theta2(:,1)=0; Theta2_grad=Theta2_grad+lambda/m*Theta2; % ------------------------------------------------------------- % ========================================================================= % Unroll gradients grad = [Theta1_grad(:) ; Theta2_grad(:)]; end
最後總結一下,對於一個典型的神經網絡,訓練過程以下:
按照這個步驟,咱們就能夠求得神經網絡的參數theta。
轉載請註明出處:http://blog.csdn.net/u010278305