Data Lake Analytics,大數據的ETL神器!

0. Data Lake Analytics(簡稱DLA)介紹

數據湖(Data Lake)是時下大數據行業熱門的概念:https://en.wikipedia.org/wiki/Data_lake。基於數據湖作分析,能夠不用作任何ETL、數據搬遷等前置過程,實現跨各類異構數據源進行大數據關聯分析,從而極大的節省成本和提高用戶體驗。關於Data Lake的概念。html

終於,阿里雲如今也有了本身的數據湖分析產品:https://www.aliyun.com/product/datalakeanalytics
能夠點擊申請使用(目前公測階段還屬於邀測模式),體驗本教程分析OTS數據之旅。
產品文檔:https://help.aliyun.com/product/70174.htmlmysql

1. ETL介紹

ETL(https://en.wikipedia.org/wiki/Extract,_transform,_load)就是Extract、Transfrom、Load即抽取、轉換、加載,是傳統數倉和大數據的重要工具。sql

抽取:就是從源系統抽取須要的數據,這些源系統是同構或異構的:好比Excel表格、XML文件、關係型數據庫。
轉換:源系統的數據按照分析目的,轉換成目標系統要求的格式,或者作數據清洗和數據加工。
加載:把轉換後的數據裝載到目標數據庫,做爲聯機分析、數據挖掘、數據展現的基礎。數據庫

整個ETL過程就像是在源系統和目標系統之間構建一個管道,數據在這個管道里源源不斷的流動。微信

2. DLA與ETL

Data Placement Optimization(數據擺放優化)是目前雲平臺上的業務系統的主流架構方向和思路。架構師們會從讀寫性能、穩定性、強一致性、成本、易用性、開發效率等方面來考量不一樣存儲引擎給業務上帶來的好處,從而實現整個業務系統的完美的平衡狀態。架構

而這種跨異構數據源之間的數據搬遷,卻不是一件容易的事情。不少ELT工具基本上屬於框架級別,須要本身開發很多的輔助工具;同時表達能力也較弱,沒法知足不少場景;另外對異構數據源的抽象和兼容性也不是那麼完美。框架

反觀DLA,不管從哪方面來看,DLA都完美的契合ETL的需求場景。下圖是DLA的簡易架構圖,DLA一開始就是基於「MPP計算引擎+存儲計算分離+彈性高可用+異構數據集源」等架構原則來設計的,支持各類異構數據源讀寫是DLA的核心目標!less

經過鏈接異構數據源來執行select + join + subQuery等邏輯實現Extract,經過Filter+ Project + Aggregation + Sort + Functions等實現數據流轉換和映射Transform,而經過insert實現Load,下面是一個例子:異步

--基本格式
insert into target_table (col1, col2, col3, ....)  --須要導入的列以及列的順序
select c1, c2, c3, ....                            --須要與導入列的類型兼容,順序要確認清楚
from ...                         --能夠是任何你想要查詢的數據目標
where ...

--下面是一個例子
insert into target_table (id, name, age)  
select s1.pk1, s2.name, s1.age            
from source_table1 s1
join source_table2 s2
on s1.sid = s2.sid
where s1.xxx = 'yyy'

下面咱們就嘗試往不一樣的數據源導入數據吧。工具

3. 實際測試(以TableStore:爲例)

  • 準備DLA帳號(已有測試帳號)

    • 測試集羣:上海region;
    • 帳號帳號:DLA測試帳號;
  • 準備兩個來源表(兩個TPC-H的OSS表,customer和nation),用來作join和數據查詢;

  • 準備一個TableStore(https://help.aliyun.com/document_detail/27280.html)的目標表;

  • 執行導入SQL,寫入數據後校驗結果;

a)兩個來源表定義:

mysql> show create database tpch_50x_text;
+---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Database      | Create Database                                                                                                                                                        |
+---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| tpch_50x_text | CREATE DATABASE `tpch_50x_text`
WITH DBPROPERTIES (
    catalog = 'hive',
    location = 'oss://${您的bucket}/datasets/tpch/50x/text_date/'
)
COMMENT '' |
+---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.02 sec)

mysql> show tables;
+------------+
| Table_Name |
+------------+
| customer   |
| nation     |
+------------+
2 rows in set (0.03 sec)

mysql> show create table customer;
+----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table    | Create Table                                                                                                                                                                                                                                                                                                                                                                           |
+----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| customer | CREATE EXTERNAL TABLE `tpch_50x_text`.`customer` (
    `c_custkey` int,
    `c_name` string,
    `c_address` string,
    `c_nationkey` int,
    `c_phone` string,
    `c_acctbal` double,
    `c_mktsegment` string,
    `c_comment` string
)
ROW FORMAT DELIMITED
    FIELDS TERMINATED BY '|'
STORED AS `TEXTFILE`
LOCATION 'oss://${您的bucket}/datasets/tpch/50x/text_date/customer_text' |
+----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.90 sec)

mysql> show create table nation;
+------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table      | Create Table                                                                                                                                                                                                                                    |
+------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| nation     | CREATE EXTERNAL TABLE `tpch_50x_text`.`nation` (
    `n_nationkey` int,
    `n_name` string,
    `n_regionkey` int,
    `n_comment` string
)
ROW FORMAT DELIMITED
    FIELDS TERMINATED BY '|'
STORED AS `TEXTFILE`
LOCATION 'oss://${您的bucket}/datasets/tpch/50x/text_date/nation_text' |
+------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.73 sec)

b)準備TableStore的庫和表

## 建庫
mysql> show create database etl_ots_test;
+--------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Database     | Create Database                                                                                                                                                                |
+--------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| etl_ots_test | CREATE DATABASE `etl_ots_test`
WITH DBPROPERTIES (
    catalog = 'ots',
    location = 'https://${您的instance}.cn-shanghai.ots-internal.aliyuncs.com',
    instance = '${您的instance}'
)
COMMENT '' |
+--------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.02 sec)

## 使用庫
mysql> use etl_ots_test;
Database changed

## 建表
mysql> show create table test_insert;
+-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table       | Create Table                                                                                                                                                                          |
+-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| test_insert | CREATE EXTERNAL TABLE `test_insert` (
    `id1_int` int NOT NULL COMMENT '客戶id主鍵',
    `c_address` varchar(20) NULL COMMENT '客戶的地址',
    `c_acctbal` double NULL COMMENT '客戶的account balance',
    PRIMARY KEY (`id1_int`)
)
COMMENT ''             |
+-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.03 sec)

如下是實際數據的截圖:

c)開始導入數據,確保導入字段順序和類型兼容性

## 檢查數據,都是空的
mysql> select * from etl_ots_test.test_insert;
Empty set (0.31 sec)
mysql> use tpch_50x_text;
Database changed

## 查詢下nation數據,其中CANADA的nationkey是3,後續要找這個數據
mysql> select n_nationkey, n_name from nation;
+-------------+----------------+
| n_nationkey | n_name         |
+-------------+----------------+
|           0 | ALGERIA        |
|           1 | ARGENTINA      |
|           2 | BRAZIL         |
|           3 | CANADA         |
|           4 | EGYPT          |
|           5 | ETHIOPIA       |
|           6 | FRANCE         |
|           7 | GERMANY        |
|           8 | INDIA          |
|           9 | INDONESIA      |
|          10 | IRAN           |
|          11 | IRAQ           |
|          12 | JAPAN          |
|          13 | JORDAN         |
|          14 | KENYA          |
|          15 | MOROCCO        |
|          16 | MOZAMBIQUE     |
|          17 | PERU           |
|          18 | CHINA          |
|          19 | ROMANIA        |
|          20 | SAUDI ARABIA   |
|          21 | VIETNAM        |
|          22 | RUSSIA         |
|          23 | UNITED KINGDOM |
|          24 | UNITED STATES  |
+-------------+----------------+
25 rows in set (0.37 sec)

## 查詢下customer數據,咱們只關注nationkey=3以及c_mktsegment='BUILDING'的數據
mysql> select count(*) from customer where c_nationkey = 3 and c_mktsegment = 'BUILDING';
+----------+
| count(*) |
+----------+
|    60350 |
+----------+
1 row in set (0.66 sec)

## 查詢下customer數據,咱們只關注nationkey=3以及c_mktsegment='BUILDING'的數據
mysql> select * from customer where c_nationkey = 3 and c_mktsegment = 'BUILDING' order by c_custkey limit 3;
+-----------+--------------------+-------------------------+-------------+-----------------+-----------+--------------+----------------------------------------------------------------------------------------------------+
| c_custkey | c_name             | c_address               | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                          |
+-----------+--------------------+-------------------------+-------------+-----------------+-----------+--------------+----------------------------------------------------------------------------------------------------+
|        13 | Customer#000000013 | nsXQu0oVjD7PM659uC3SRSp |           3 | 13-761-547-5974 |   3857.34 | BUILDING     | ounts sleep carefully after the close frays. carefully bold notornis use ironic requests. blithely |
|        27 | Customer#000000027 | IS8GIyxpBrLpMT0u7       |           3 | 13-137-193-2709 |   5679.84 | BUILDING     |  about the carefully ironic pinto beans. accoun                                                    |
|        40 | Customer#000000040 | gOnGWAyhSV1ofv          |           3 | 13-652-915-8939 |    1335.3 | BUILDING     | rges impress after the slyly ironic courts. foxes are. blithely                                    |
+-----------+--------------------+-------------------------+-------------+-----------------+-----------+--------------+----------------------------------------------------------------------------------------------------+
3 rows in set (0.78 sec)

導入以前咱們想清楚需求:把國家是'CANADA'的,客戶的market segmentation爲'BUILDING'的客戶找到,而後對c_custkey排序,選擇前10條數據,而後選擇他們的c_custkey、c_address、c_acctbal三列,清晰到OTS的test_insert表中,以備後續使用。

##先查詢下數據,看看有幾條數據
mysql> select c.c_custkey, c.c_address, c.c_acctbal 
    -> from tpch_50x_text.customer c
    -> join tpch_50x_text.nation n 
    -> on c.c_nationkey = n.n_nationkey
    -> where n.n_name = 'CANADA' 
    -> and c.c_mktsegment = 'BUILDING' 
    -> order by c.c_custkey
    -> limit 10;
+-----------+--------------------------------+-----------+
| c_custkey | c_address                      | c_acctbal |
+-----------+--------------------------------+-----------+
|        13 | nsXQu0oVjD7PM659uC3SRSp        |   3857.34 |
|        27 | IS8GIyxpBrLpMT0u7              |   5679.84 |
|        40 | gOnGWAyhSV1ofv                 |    1335.3 |
|        64 | MbCeGY20kaKK3oalJD,OT          |   -646.64 |
|       255 | I8Wz9sJBZTnEFG08lhcbfTZq3S     |   3196.07 |
|       430 | s2yfPEGGOqHfgkVSs5Rs6 qh,SuVmR |   7905.17 |
|       726 | 4w7DOLtN9Hy,xzZMR              |   6253.81 |
|       905 | f iyVEgCU2lZZPCebx5bGp5        |   -600.73 |
|      1312 | f5zgMB4MHLMSHaX0tDduHAmVd4     |    9459.5 |
|      1358 | t23gsl4TdVXqTZha DioEHIq5w7y   |   5149.23 |
+-----------+--------------------------------+-----------+
10 rows in set (1.09 sec)

##開始導入
mysql> insert into etl_ots_test.test_insert (id1_int ,c_address, c_acctbal)
    -> select c.c_custkey, c.c_address, c.c_acctbal 
    -> from tpch_50x_text.customer c
    -> join tpch_50x_text.nation n 
    -> on c.c_nationkey = n.n_nationkey
    -> where n.n_name = 'CANADA' 
    -> and c.c_mktsegment = 'BUILDING' 
    -> order by c.c_custkey
    -> limit 10;
+------+
| rows |
+------+
|   10 |
+------+
1 row in set (2.14 sec)

## 驗證結果,沒有問題:
mysql> select * from etl_ots_test.test_insert;
+---------+--------------------------------+-----------+
| id1_int | c_address                      | c_acctbal |
+---------+--------------------------------+-----------+
|      13 | nsXQu0oVjD7PM659uC3SRSp        |   3857.34 |
|      27 | IS8GIyxpBrLpMT0u7              |   5679.84 |
|      40 | gOnGWAyhSV1ofv                 |    1335.3 |
|      64 | MbCeGY20kaKK3oalJD,OT          |   -646.64 |
|     255 | I8Wz9sJBZTnEFG08lhcbfTZq3S     |   3196.07 |
|     430 | s2yfPEGGOqHfgkVSs5Rs6 qh,SuVmR |   7905.17 |
|     726 | 4w7DOLtN9Hy,xzZMR              |   6253.81 |
|     905 | f iyVEgCU2lZZPCebx5bGp5        |   -600.73 |
|    1312 | f5zgMB4MHLMSHaX0tDduHAmVd4     |    9459.5 |
|    1358 | t23gsl4TdVXqTZha DioEHIq5w7y   |   5149.23 |
+---------+--------------------------------+-----------+
10 rows in set (0.27 sec)

d)注意點:

雖然有ETL工具快速導入導出,但也有些問題須要注意的,好比:

  • 若是導入任務時間太長,請走異步模式,不然鏈接斷開可能會影響任務正常運行;
  • TableStore目前的insert是根據主鍵覆蓋,主鍵不會去重判斷的,請務必不能對你正常的數據表作插入;
  • 目前DLA和TableStore的事務能力還不夠,可能會出現中斷,已導入的數據不會清楚,須要自行清理;
  • 列的個數和列的類型,須要本身對齊保障,不然會報錯;

4. 其餘數據源導入

整個過程是否是很簡單?是否是想要導入其餘場景的數據源?對DLA而言,底層任何數據源都以相同方式處理,只要確保其餘數據源的庫、表在DLA中正常建立,就能夠正常的讀寫,實現ETL啦!趕忙試試吧!

其餘相關的文檔:

 

原文連接 更多技術乾貨 請關注阿里云云棲社區微信號 :yunqiinsight  

相關文章
相關標籤/搜索