JavaShuo
欄目
標籤
Incremental Few-Shot Learning with Attention Attractor Networks
時間 2021-01-21
原文
原文鏈接
https://www.jianshu.com/p/fdd4f78bcf0b 多倫多大學提出注意式吸引器網絡,實現漸進式少量次學習 引言 通常,機器學習分類器的訓練目標是識別一組預定義的類別,但是很多應用往往需要機器學習能通過有限的數據靈活地學習額外的概念,而且無需在整個訓練集上重新訓練。 這篇論文提出的漸進式少量次學習(incremental few-shot learning)能夠解決這個
>>阅读原文<<
相關文章
1.
GRAPH2SEQ: GRAPH TO SEQUENCE LEARNING WITH ATTENTION-BASED NEURAL NETWORKS
2.
《Incremental Classifier Learning with Generative Adversarial Networks》 閱讀筆記
3.
Sutskever2014_Sequence to Sequence Learning with Neural Networks
4.
Few-shot Learning with Graph Neural Networks
5.
Paper:Sequence to Sequence Learning with Neural Networks
6.
論文筆記:Learning Social Image Embedding with Deep Multimodal Attention Networks
7.
Learning Transferable Features with Deep Adaptation Networks
8.
Partial Transfer Learning with Selective Adversarial Networks
9.
FlowNet: Learning Optical Flow with Convolutional Networks
10.
Few-Shot Learning with Graph Neural Networks
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
SQLite Vacuum
-
SQLite教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
networks
incremental
attention
learning
bilstm+attention
with+this
with...connect
Deep Learning
Meta-learning
with...as
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
IDEA 2019.2解讀:性能更好,體驗更優!
2.
使用雲效搭建前端代碼倉庫管理,構建與部署
3.
Windows本地SVN服務器創建用戶和版本庫使用
4.
Sqli-labs-Less-46(筆記)
5.
Docker真正的入門
6.
vue面試知識點
7.
改變jre目錄之後要做的修改
8.
2019.2.23VScode的c++配置詳細方法
9.
從零開始OpenCV遇到的問題一
10.
創建動畫剪輯
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
GRAPH2SEQ: GRAPH TO SEQUENCE LEARNING WITH ATTENTION-BASED NEURAL NETWORKS
2.
《Incremental Classifier Learning with Generative Adversarial Networks》 閱讀筆記
3.
Sutskever2014_Sequence to Sequence Learning with Neural Networks
4.
Few-shot Learning with Graph Neural Networks
5.
Paper:Sequence to Sequence Learning with Neural Networks
6.
論文筆記:Learning Social Image Embedding with Deep Multimodal Attention Networks
7.
Learning Transferable Features with Deep Adaptation Networks
8.
Partial Transfer Learning with Selective Adversarial Networks
9.
FlowNet: Learning Optical Flow with Convolutional Networks
10.
Few-Shot Learning with Graph Neural Networks
>>更多相關文章<<