JavaShuo
欄目
標籤
Incremental Few-Shot Learning with Attention Attractor Networks
時間 2021-01-21
原文
原文鏈接
https://www.jianshu.com/p/fdd4f78bcf0b 多倫多大學提出注意式吸引器網絡,實現漸進式少量次學習 引言 通常,機器學習分類器的訓練目標是識別一組預定義的類別,但是很多應用往往需要機器學習能通過有限的數據靈活地學習額外的概念,而且無需在整個訓練集上重新訓練。 這篇論文提出的漸進式少量次學習(incremental few-shot learning)能夠解決這個
>>阅读原文<<
相關文章
1.
GRAPH2SEQ: GRAPH TO SEQUENCE LEARNING WITH ATTENTION-BASED NEURAL NETWORKS
2.
《Incremental Classifier Learning with Generative Adversarial Networks》 閱讀筆記
3.
Sutskever2014_Sequence to Sequence Learning with Neural Networks
4.
Few-shot Learning with Graph Neural Networks
5.
Paper:Sequence to Sequence Learning with Neural Networks
6.
論文筆記:Learning Social Image Embedding with Deep Multimodal Attention Networks
7.
Learning Transferable Features with Deep Adaptation Networks
8.
Partial Transfer Learning with Selective Adversarial Networks
9.
FlowNet: Learning Optical Flow with Convolutional Networks
10.
Few-Shot Learning with Graph Neural Networks
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
SQLite Vacuum
-
SQLite教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
networks
incremental
attention
learning
bilstm+attention
with+this
with...connect
Deep Learning
Meta-learning
with...as
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
以實例說明微服務拆分(以SpringCloud+Gradle)
2.
idea中通過Maven已經將依賴導入,在本地倉庫和external libraries中均有,運行的時候報沒有包的錯誤。
3.
Maven把jar包打到指定目錄下
4.
【SpringMvc】JSP+MyBatis 用戶登陸後更改導航欄信息
5.
在Maven本地倉庫安裝架包
6.
搭建springBoot+gradle+mysql框架
7.
PHP關於文件$_FILES一些問題、校驗和限制
8.
php 5.6連接mongodb擴展
9.
Vue使用命令行創建項目
10.
eclipse修改啓動圖片
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
GRAPH2SEQ: GRAPH TO SEQUENCE LEARNING WITH ATTENTION-BASED NEURAL NETWORKS
2.
《Incremental Classifier Learning with Generative Adversarial Networks》 閱讀筆記
3.
Sutskever2014_Sequence to Sequence Learning with Neural Networks
4.
Few-shot Learning with Graph Neural Networks
5.
Paper:Sequence to Sequence Learning with Neural Networks
6.
論文筆記:Learning Social Image Embedding with Deep Multimodal Attention Networks
7.
Learning Transferable Features with Deep Adaptation Networks
8.
Partial Transfer Learning with Selective Adversarial Networks
9.
FlowNet: Learning Optical Flow with Convolutional Networks
10.
Few-Shot Learning with Graph Neural Networks
>>更多相關文章<<