JVM調優總結(2):基本垃圾回收算法

能夠從不一樣的的角度去劃分垃圾回收算法: 算法

按照基本回收策略分

引用計數(Reference Counting): 多線程

比較古老的回收算法。原理是此對象有一個引用,即增長一個計數,刪除一個引用則減小一個計數。垃圾回收時,只用收集計數爲0的對象。此算法最致命的是沒法處理循環引用的問題。 併發

標記-清除(Mark-Sweep): spa

此算法執行分兩階段。第一階段從引用根節點開始標記全部被引用的對象,第二階段遍歷整個堆,把未標記的對象清除。此算法須要暫停整個應用,同時,會產生內存碎片。 線程

複製(Copying): 對象

此算法把內存空間劃爲兩個相等的區域,每次只使用其中一個區域。垃圾回收時,遍歷當前使用區域,把正在使用中的對象複製到另一個區域中。次算法每次只處理正在使用中的對象,所以複製成本比較小,同時複製過去之後還能進行相應的內存整理,不會出現「碎片」問題。固然,此算法的缺點也是很明顯的,就是須要兩倍內存空間。 生命週期

標記-整理(Mark-Compact): 內存

此算法結合了「標記-清除」和「複製」兩個算法的優勢。也是分兩階段,第一階段從根節點開始標記全部被引用對象,第二階段遍歷整個堆,把清除未標記對象而且把存活對象「壓縮」到堆的其中一塊,按順序排放。此算法避免了「標記-清除」的碎片問題,同時也避免了「複製」算法的空間問題。 rem

按分區對待的方式分

增量收集(Incremental Collecting):實時垃圾回收算法,即:在應用進行的同時進行垃圾回收。不知道什麼緣由JDK5.0中的收集器沒有使用這種算法的。 io

分代收集(Generational Collecting):基於對對象生命週期分析後得出的垃圾回收算法。把對象分爲年青代、年老代、持久代,對不一樣生命週期的對象使用不一樣的算法(上述方式中的一個)進行回收。如今的垃圾回收器(從J2SE1.2開始)都是使用此算法的。

按系統線程分

串行收集:串行收集使用單線程處理全部垃圾回收工做,由於無需多線程交互,實現容易,並且效率比較高。可是,其侷限性也比較明顯,即沒法使用多處理器的優點,因此此收集適合單處理器機器。固然,此收集器也能夠用在小數據量(100M左右)狀況下的多處理器機器上。

並行收集:並行收集使用多線程處理垃圾回收工做,於是速度快,效率高。並且理論上CPU數目越多,越能體現出並行收集器的優點。

併發收集:相對於串行收集和並行收集而言,前面兩個在進行垃圾回收工做時,須要暫停整個運行環境,而只有垃圾回收程序在運行,所以,系統在垃圾回收時會有明顯的暫停,並且暫停時間會由於堆越大而越長。

相關文章
相關標籤/搜索