JVM調優總結(二)-基本垃圾回收算法(轉載)

能夠從不一樣的的角度去劃分垃圾回收算法:java

按照基本回收策略分

引用計數(Reference Counting):算法

比較古老的回收算法。原理是此對象有一個引用,即增長一個計數,刪除一個引用則減小一個計數。垃圾回收時,只用收集計數爲0的對象。此算法最致命的是沒法處理循環引用的問題。多線程

 

標記-清除(Mark-Sweep):併發

 

 

此算法執行分兩階段。第一階段從引用根節點開始標記全部被引用的對象,第二階段遍歷整個堆,把未標記的對象清除。此算法須要暫停整個應用,同時,會產生內存碎片。函數

 

複製(Copying):線程

 

 

此算法把內存空間劃爲兩個相等的區域,每次只使用其中一個區域。垃圾回收時,遍歷當前使用區域,把正在使用中的對象複製到另一個區域中。次算法每次只處理正在使用中的對象,所以複製成本比較小,同時複製過去之後還能進行相應的內存整理,不會出現「碎片」問題。固然,此算法的缺點也是很明顯的,就是須要兩倍內存空間。對象

 

標記-整理(Mark-Compact):生命週期

 

 

此算法結合了「標記-清除」和「複製」兩個算法的優勢。也是分兩階段,第一階段從根節點開始標記全部被引用對象,第二階段遍歷整個堆,把清除未標記對象而且把存活對象「壓縮」到堆的其中一塊,按順序排放。此算法避免了「標記-清除」的碎片問題,同時也避免了「複製」算法的空間問題。內存

按分區對待的方式分

增量收集(Incremental Collecting):實時垃圾回收算法,即:在應用進行的同時進行垃圾回收。不知道什麼緣由JDK5.0中的收集器沒有使用這種算法的。rem

 

分代收集(Generational Collecting):基於對對象生命週期分析後得出的垃圾回收算法。把對象分爲年青代、年老代、持久代,對不一樣生命週期的對象使用不一樣的算法(上述方式中的一個)進行回收。如今的垃圾回收器(從J2SE1.2開始)都是使用此算法的。

 

按系統線程分

串行收集:串行收集使用單線程處理全部垃圾回收工做,由於無需多線程交互,實現容易,並且效率比較高。可是,其侷限性也比較明顯,即沒法使用多處理器的優點,因此此收集適合單處理器機器。固然,此收集器也能夠用在小數據量(100M左右)狀況下的多處理器機器上。

 

並行收集:並行收集使用多線程處理垃圾回收工做,於是速度快,效率高。並且理論上CPU數目越多,越能體現出並行收集器的優點。

 

併發收集:相對於串行收集和並行收集而言,前面兩個在進行垃圾回收工做時,須要暫停整個運行環境,而只有垃圾回收程序在運行,所以,系統在垃圾回收時會有明顯的暫停,並且暫停時間會由於堆越大而越長。

 

 

 

==============================================================================================================================

 

如何區分垃圾

 

    上面說到的「引用計數」法,經過統計控制生成對象和刪除對象時的引用數來判斷。垃圾回收程序收集計數爲0的對象便可。可是這種方法沒法解決循環引用。因此,後來實現的垃圾判斷算法中,都是從程序運行的根節點出發,遍歷整個對象引用,查找存活的對象。那麼在這種方式的實現中,垃圾回收從哪兒開始的呢?即,從哪兒開始查找哪些對象是正在被當前系統使用的。上面分析的堆和棧的區別,其中棧是真正進行程序執行地方,因此要獲取哪些對象正在被使用,則須要從Java棧開始。同時,一個棧是與一個線程對應的,所以,若是有多個線程的話,則必須對這些線程對應的全部的棧進行檢查。

    同時,除了棧外,還有系統運行時的寄存器等,也是存儲程序運行數據的。這樣,以棧或寄存器中的引用爲起點,咱們能夠找到堆中的對象,又從這些對象找到對堆中其餘對象的引用,這種引用逐步擴展,最終以null引用或者基本類型結束,這樣就造成了一顆以Java棧中引用所對應的對象爲根節點的一顆對象樹,若是棧中有多個引用,則最終會造成多顆對象樹。在這些對象樹上的對象,都是當前系統運行所須要的對象,不能被垃圾回收。而其餘剩餘對象,則能夠視爲沒法被引用到的對象,能夠被當作垃圾進行回收。

所以,垃圾回收的起點是一些根對象(java棧, 靜態變量, 寄存器...)。而最簡單的Java棧就是Java程序執行的main函數。這種回收方式,也是上面提到的「標記-清除」的回收方式

 

 

如何處理碎片

   因爲不一樣Java對象存活時間是不必定的,所以,在程序運行一段時間之後,若是不進行內存整理,就會出現零散的內存碎片。碎片最直接的問題就是會致使沒法分配大塊的內存空間,以及程序運行效率下降。因此,在上面提到的基本垃圾回收算法中,「複製」方式和「標記-整理」方式,均可以解決碎片的問題。

 

 

如何解決同時存在的對象建立和對象回收問題

    垃圾回收線程是回收內存的,而程序運行線程則是消耗(或分配)內存的,一個回收內存,一個分配內存,從這點看,二者是矛盾的。所以,在現有的垃圾回收方式中,要進行垃圾回收前,通常都須要暫停整個應用(即:暫停內存的分配),而後進行垃圾回收,回收完成後再繼續應用。這種實現方式是最直接,並且最有效的解決兩者矛盾的方式。

可是這種方式有一個很明顯的弊端,就是當堆空間持續增大時,垃圾回收的時間也將會相應的持續增大,對應應用暫停的時間也會相應的增大。一些對相應時間要求很高的應用,好比最大暫停時間要求是幾百毫秒,那麼當堆空間大於幾個G時,就頗有可能超過這個限制,在這種狀況下,垃圾回收將會成爲系統運行的一個瓶頸。爲解決這種矛盾,有了併發垃圾回收算法,使用這種算法,垃圾回收線程與程序運行線程同時運行。在這種方式下,解決了暫停的問題,可是由於須要在新生成對象的同時又要回收對象,算法複雜性會大大增長,系統的處理能力也會相應下降,同時,「碎片」問題將會比較難解決。

相關文章
相關標籤/搜索