JavaShuo
欄目
標籤
DOREFA-NET: TRAINING LOW BITWIDTH CONVOLUTIONAL NEURAL NETWORKS WITH LOW BITWIDTH GRADIENTS
時間 2020-12-24
原文
原文鏈接
BNN和異或網將權重和卷積層的值進行量化,進而將在前相傳播過程中花費最多的卷積操作轉化爲了兩個bit向量的逐比特的點積: 這裏bitcount計算比特向量中比特的數量。 之前的網絡都沒能在反向傳播保持8比特以下的精度的同時,能夠擁有可接受的精度。 dorefa-net的創新點在於: 1、它能夠以任意的精度量化權重、激活層和梯度。 2、由於比特卷積可以高效地在各種設備上實現,因此他爲在各種軟件上實現
>>阅读原文<<
相關文章
1.
量化網絡訓練--Towards Effective Low-bitwidth Convolutional Neural Networks
2.
TRAINING DEEP NEURAL NETWORKS WITH LOW PRECISION MULTIPLICATIONS
3.
Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization
4.
《SWALP:Stochastic Weight Averaging in Low-Precision Training》
5.
LCDet Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems
6.
Paper reading (四十二):Low Data Drug Discovery with One-Shot Learning
7.
Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM
8.
論文閱讀:Learning Dual Convolutional Neural Networks for Low-Level Vision
9.
論文閱讀筆記(一):Learning Dual Convolutional Neural Networks for Low-Level Vision
10.
論文閱讀(【CVPR2018】Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision)
更多相關文章...
•
PHP range() 函數
-
PHP參考手冊
•
XSLT
元素
-
XSLT 教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
漫談MySQL的鎖機制
相關標籤/搜索
low
slow&&low
low篇
Low版
low&medium
gradients
convolutional
neural
training
flink training
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
[最佳實踐]瞭解 Eolinker 如何助力遠程辦公
2.
katalon studio 安裝教程
3.
精通hibernate(harness hibernate oreilly)中的一個」錯誤「
4.
ECharts立體圓柱型
5.
零拷貝總結
6.
6 傳輸層
7.
Github協作圖想
8.
Cannot load 32-bit SWT libraries on 64-bit JVM
9.
IntelliJ IDEA 找其歷史版本
10.
Unity3D(二)遊戲對象及組件
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
量化網絡訓練--Towards Effective Low-bitwidth Convolutional Neural Networks
2.
TRAINING DEEP NEURAL NETWORKS WITH LOW PRECISION MULTIPLICATIONS
3.
Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization
4.
《SWALP:Stochastic Weight Averaging in Low-Precision Training》
5.
LCDet Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems
6.
Paper reading (四十二):Low Data Drug Discovery with One-Shot Learning
7.
Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM
8.
論文閱讀:Learning Dual Convolutional Neural Networks for Low-Level Vision
9.
論文閱讀筆記(一):Learning Dual Convolutional Neural Networks for Low-Level Vision
10.
論文閱讀(【CVPR2018】Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision)
>>更多相關文章<<