本文給出如何使用Elasticsearch的Java API作相似SQL的group by聚合。json
爲了簡單起見,只給出一級groupby即group by field1(而不涉及到多級,例如group by field1, field2, ...);若是你須要多級的groupby,在實現上可能須要拆分的更加細緻。函數
即將給出的方法,適用於以下的場景:測試
場景1:找出分組中的全部桶,例如,select group_name from index_name group by group_name;ui
場景2:靈活添加一個或者多個聚合函數,例如,select group_name, max(count), avg(count) group by group_name;this
一、用法spa
GroupBy類是咱們的實現。code
1)測試用例orm
public static void main(String[] args) { /* * 初始化es客戶端 * */ ESClient esClient = new ESClient( "dqa-cluster", "10.93.21.21:9300,10.93.18.34:9300,10.93.18.35:9300,100.90.62.33:9300,100.90.61.14:9300", false); /* * 爲了演示, 構造了一個距離查詢, 至關於where子句. * */ GeoDistanceRangeQueryBuilder queryBuilder = QueryBuilders.geoDistanceRangeQuery("location") .point(39.971424, 116.398251) .from("0m") .to(String.format("%fm", 500.0)) .includeLower(true) .includeUpper(true) .optimizeBbox("memory") .geoDistance(GeoDistance.SLOPPY_ARC); SearchRequestBuilder search = esClient.getClient().prepareSearch("moon").setTypes("bj") .setSearchType(SearchType.DFS_QUERY_AND_FETCH) .setQuery(queryBuilder); /* * GroupBy類就是咱們的實現, 初始化的時候傳入的參數依次是, search, 桶命名, 分桶字段, 排序asc * select date as date_group from index group by date; * */ GroupBy groupBy = new GroupBy(search, "date_group", "date", true); /* * 添加各類分組函數 * 這裏我實現了10種, 下面是其中的6種 * */ groupBy.addSumAgg("pre_total_fee_sum", "pre_total_fee"); groupBy.addAvgAgg("pre_total_fee_avg", "pre_total_fee"); groupBy.addPercentilesAgg("pre_total_fee_percent", "pre_total_fee"); groupBy.addPercentileRanksAgg("pre_total_fee_percentRank", "pre_total_fee", new double[]{13, 16, 20}); groupBy.addStatsAgg("pre_total_fee_stats", "pre_total_fee"); groupBy.addCardinalityAgg("type_card", "type"); /* * 獲取groupBy聚合的結果 * 結果是兩級Map, 這裏的實現是TreeMap由於要保護桶的排序 * */ Map<String, Object> groupbyResponse = groupBy.getGroupbyResponse(); for (Map.Entry<String, Object> entry : groupbyResponse.entrySet()) { String bucketKey = entry.getKey(); Map<String, String> subAggMap = (Map<String, String>) entry.getValue(); System.out.println(String.format("%s\t%s\t%s", bucketKey, "pre_total_fee_sum", subAggMap.get("pre_total_fee_sum"))); System.out.println(String.format("%s\t%s\t%s", bucketKey, "pre_total_fee_avg", subAggMap.get("pre_total_fee_avg"))); System.out.println(String.format("%s\t%s\t%s", bucketKey, "pre_total_fee_percent", subAggMap.get("pre_total_fee_percent"))); System.out.println(String.format("%s\t%s\t%s", bucketKey, "pre_total_fee_percentRank", subAggMap.get("pre_total_fee_percentRank"))); System.out.println(String.format("%s\t%s\t%s", bucketKey, "pre_total_fee_stats", subAggMap.get("pre_total_fee_stats"))); System.out.println(String.format("%s\t%s\t%s", bucketKey, "type_card", subAggMap.get("type_card"))); } }
2)初始化對象
初始化的時候,至關於構造了這樣一個SQL:select date as date_group from index group by date;blog
傳入search對象,至關於where子句
傳入分桶命名, 至關於 as date_group
傳入分桶字段,至關於date
傳入排序,asc=true
3)初始化完成後,能夠添加各類聚合函數,也就是場景2。
GroupBy類裏實現了10種聚合函數
4)讀取結果
結果的返回是兩級Map,爲了保護分桶的排序,實現中使用了TreeMap。
這裏須要注意的是,有些聚合函數的返回,並非一個值,而是一組值,如Percentiles、Stats等等,這裏咱們把這一組值壓縮成JSONString了。
5)打印輸出
咱們以日期進行了分桶,同一個分桶中的聚合結果,sum、avg、cardinality都是單個的值。而percentiles、percentileRanks、stats是壓縮的jsonstring。
二、實現
先上代碼,而後在後面進行講解。
public class GroupBy { private SearchRequestBuilder search; private String termsName; private TermsBuilder termsBuilder; private List<Map<String, Object>> subAggList = new ArrayList<Map<String, Object>>(); public GroupBy(SearchRequestBuilder search, String termsName, String fieldName, boolean asc) { this.search = search; this.termsName = termsName; termsBuilder = AggregationBuilders.terms(termsName).field(fieldName).order(Terms.Order.term(asc)).size(0); } private void addSubAggList(String aggName, MetricsAggregationBuilder aggBuilder) { Map<String, Object> subAgg = new HashMap<String, Object>(); subAgg.put("aggName", aggName); subAgg.put("aggBuilder", aggBuilder); subAggList.add(subAgg); } public void addSumAgg(String aggName, String fieldName) { SumBuilder builder = AggregationBuilders.sum(aggName).field(fieldName); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public boolean bucketSumAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof SumBuilder) { tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString()); return true; } else { return false; } } public void addCountAgg(String aggName, String fieldName) { ValueCountBuilder builder = AggregationBuilders.count(aggName).field(fieldName); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public boolean bucketCountAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof ValueCountBuilder) { tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString()); return true; } else { return false; } } public void addAvgAgg(String aggName, String fieldName) { AvgBuilder builder = AggregationBuilders.avg(aggName).field(fieldName); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public boolean bucketAvgAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof AvgBuilder) { tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString()); return true; } else { return false; } } public void addMinAgg(String aggName, String fieldName) { MinBuilder builder = AggregationBuilders.min(aggName).field(fieldName); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public boolean bucketMinAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof MinBuilder) { tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString()); return true; } else { return false; } } public void addMaxAgg(String aggName, String fieldName) { MaxBuilder builder = AggregationBuilders.max(aggName).field(fieldName); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public boolean bucketMaxAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof MaxBuilder) { tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString()); return true; } else { return false; } } public void addStatsAgg(String aggName, String fieldName) { StatsBuilder builder = AggregationBuilders.stats(aggName).field(fieldName); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public boolean bucketStatsAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof StatsBuilder) { Stats stats = bucket.getAggregations().get(aggName); JSONObject jsonObject = new JSONObject(); jsonObject.put("min", stats.getMin()); jsonObject.put("max", stats.getMax()); jsonObject.put("sum", stats.getMax()); jsonObject.put("count", stats.getCount()); jsonObject.put("avg", stats.getAvg()); tmpMap.put(aggName, jsonObject.toJSONString()); return true; } else { return false; } } public void addExtendedStatsAgg(String aggName, String fieldName) { ExtendedStatsBuilder builder = AggregationBuilders.extendedStats(aggName).field(fieldName); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public boolean bucketExtendedStatsAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof ExtendedStatsBuilder) { ExtendedStats extendedStats = bucket.getAggregations().get(aggName); JSONObject jsonObject = new JSONObject(); jsonObject.put("min", extendedStats.getMin()); jsonObject.put("max", extendedStats.getMax()); jsonObject.put("sum", extendedStats.getMax()); jsonObject.put("count", extendedStats.getCount()); jsonObject.put("avg", extendedStats.getAvg()); jsonObject.put("stdDeviation", extendedStats.getStdDeviation()); jsonObject.put("sumOfSquares", extendedStats.getSumOfSquares()); jsonObject.put("variance", extendedStats.getVariance()); tmpMap.put(aggName, jsonObject.toJSONString()); return true; } else { return false; } } public void addPercentilesAgg(String aggName, String fieldName) { PercentilesBuilder builder = AggregationBuilders.percentiles(aggName).field(fieldName); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public void addPercentilesAgg(String aggName, String fieldName, double[] percentiles) { PercentilesBuilder builder = AggregationBuilders.percentiles(aggName).field(fieldName).percentiles(percentiles); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public boolean bucketPercentilesAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof PercentilesBuilder) { Percentiles percentiles = bucket.getAggregations().get(aggName); JSONObject jsonObject = new JSONObject(); for (Percentile percentile : percentiles) { jsonObject.put(String.valueOf(percentile.getPercent()), percentile.getValue()); } tmpMap.put(aggName, jsonObject.toJSONString()); return true; } else { return false; } } public void addPercentileRanksAgg(String aggName, String fieldName, double[] percentiles) { PercentileRanksBuilder builder = AggregationBuilders.percentileRanks(aggName).field(fieldName).percentiles(percentiles); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public boolean bucketPercentileRanksAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof PercentileRanksBuilder) { PercentileRanks percentileRanks = bucket.getAggregations().get(aggName); JSONObject jsonObject = new JSONObject(); for (Percentile percentile : percentileRanks) { jsonObject.put(String.valueOf(percentile.getPercent()), percentile.getValue()); } tmpMap.put(aggName, jsonObject.toJSONString()); return true; } else { return false; } } public void addCardinalityAgg(String aggName, String fieldName) { CardinalityBuilder builder = AggregationBuilders.cardinality(aggName).field(fieldName); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); } public boolean bucketCardinalityAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof CardinalityBuilder) { tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString()); return true; } else { return false; } } public List<Terms.Bucket> getTermsBucket() { search.addAggregation(termsBuilder); Terms termsGroup = search.get().getAggregations().get(termsName); return termsGroup.getBuckets(); } public Map<String, Object> getGroupbyResponse() { Map<String, Object> aggResponseMap = new TreeMap<String, Object>(); for (Terms.Bucket bucket : getTermsBucket()) { String bucketKeyAsString = bucket.getKeyAsString(); Map<String, String> tmpMap = new TreeMap<String, String>(); for (Map<String, Object> subAgg : subAggList) { String subAggName = subAgg.get("aggName").toString(); MetricsAggregationBuilder subAggBuilder = (MetricsAggregationBuilder) subAgg.get("aggBuilder"); if (bucketAvgAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketMaxAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketMinAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketSumAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketCountAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketCardinalityAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketPercentileRanksAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketPercentilesAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketExtendedStatsAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketStatsAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; } aggResponseMap.put(bucketKeyAsString, tmpMap); } return aggResponseMap; } }
1)構造函數
構造函數中,核心邏輯是termsBuilder = AggregationBuilders.terms(termsName).field(fieldName).order(Terms.Order.term(asc)).size(0);
實例化了termsBuilder也就是分桶。
後面調用add...函數簇添加聚合函數的時候,都是經過termsBuilder.subAggregation(builder)在分桶的基礎上添加了子聚合。
最後在獲取結果的時候search.addAggregation(termsBuilder);將termsBuilder添加到查詢上,進行聚合查詢。
2)添加聚合函數add...函數簇
以sum函數爲例
public void addSumAgg(String aggName, String fieldName) { SumBuilder builder = AggregationBuilders.sum(aggName).field(fieldName); termsBuilder.subAggregation(builder); addSubAggList(aggName, builder); }
a)初始化了一個SumBuilder聚合操做,而後做爲termsBuilder的子聚合。
b)addSubAggList方法在subAggList屬性(subAggList屬性是一個List<Map<String, Object>>)上保存了全部添加了的子聚合的名字和builder。這樣作是爲了在解析結果的時候,知道是哪一種type的聚合(instanceof),以便使用不一樣的邏輯去解析。
private void addSubAggList(String aggName, MetricsAggregationBuilder aggBuilder) { Map<String, Object> subAgg = new HashMap<String, Object>(); subAgg.put("aggName", aggName); subAgg.put("aggBuilder", aggBuilder); subAggList.add(subAgg); }
3)按類型獲取結果
仍是以sum函數爲例
public boolean bucketSumAgg(Terms.Bucket bucket, String aggName, MetricsAggregationBuilder aggBuilder, Map<String, String> tmpMap) { if (aggBuilder instanceof SumBuilder) { tmpMap.put(aggName, bucket.getAggregations().get(aggName).getProperty("value").toString()); return true; } else { return false; } }
a)這裏先判斷了aggBuilder是哪一種類型的(instanceof),若是是SumBuilder類型的,就按照sum的結果類型去讀取返回結果。
b)sum的返回結果就是一個值,當遇到percentiles這種類型的,返回結果不是一個值,此時爲了簡單,我將結果壓縮成了jsonstring,也至關於一個值,能夠自行參看代碼。
c)後面依賴return true實現了一個邏輯,一旦命中了類型,就再也不繼續判斷了,提高效率。
d)tmpMap是外部傳入的一個全局接收器,用來存儲結果。
4)解析全部的子聚合結果
public Map<String, Object> getGroupbyResponse() { Map<String, Object> aggResponseMap = new TreeMap<String, Object>(); for (Terms.Bucket bucket : getTermsBucket()) { String bucketKeyAsString = bucket.getKeyAsString(); Map<String, String> tmpMap = new TreeMap<String, String>(); for (Map<String, Object> subAgg : subAggList) { String subAggName = subAgg.get("aggName").toString(); MetricsAggregationBuilder subAggBuilder = (MetricsAggregationBuilder) subAgg.get("aggBuilder"); if (bucketAvgAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketMaxAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketMinAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketSumAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketCountAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketCardinalityAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketPercentileRanksAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketPercentilesAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketExtendedStatsAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; if (bucketStatsAgg(bucket, subAggName, subAggBuilder, tmpMap)) continue; } aggResponseMap.put(bucketKeyAsString, tmpMap); } return aggResponseMap; }
這裏是解析結果的代碼。tmpMap定義爲全局接收器。
a)經過遍歷subAggList存儲的全部子聚合函數,獲取全部的子聚合結果,並保存成兩級TreeMap。
b)對每一個迭代,調用全部的bucket...函數簇,這裏經過if判斷是否命中類型,若是命中了,就經過continue再也不繼續檢查。
c) aggResponseMap使用treeMap是爲了保持bucket的有序。
三、十種聚合函數
最後列出咱們實現的十種聚合函數,你能夠根據本身的需求繼續添加。
1)返回單個值:sum、avg、min、max、count、cardinality(有偏差)
2)percentiles:分位數查詢,傳入分位數,獲取分位數上的值;percentileRanks,分位數排名查詢,傳入值,返回對應的分位數;互爲逆向操做。
3)stats和extendedStats,extended聚合更詳細的信息max、min、avg、sum、平方和、標準差等。