今日繼續摸魚Hystrix的請求合併部分,可能不如請求緩存分析的詳細,可是我感受足夠表達實現原理了。java
本文選擇了較爲簡單的請求合併的用例進行切入並分析,即CommandCollapserGetValueForKey
,而非ObservableCollapserGetWordForNumber
,原理都是一致的,只是ObservableCollapserGetWordForNumber
提供了更爲豐富的接口,供業務實現。git
從CommandCollapserGetValueForKey
例子看,只要作以下3件事,就能實現請求合併。github
一、繼承HystrixCollapser<BatchReturnType, ResponseType, RequestArgumentType>。 二、重寫三個方法,分別爲
getRequestArgument
、createCommand
、mapResponseToRequests
。 三、寫一個BatchCommand
,即請求合併後的一個HystrixCommand
。緩存
接下來,能夠從源碼層面上看,如何經過這三步操做實現請求合併。app
<BatchReturnType, ResponseType, RequestArgumentType>
泛型的含義,已經在代碼塊中添加了相應註釋。**
* 根據設定時間參數以及合併請求數,將多個HystrixCommand合併成一次的HystrixCommand,從而將短期調用服務的次數減小。
* <p>
* 一般將時間窗口設爲10ms左右
*
* @param <BatchReturnType>
* 合併後的HystrixCommand的返回類型,例如String變成List<String>。
* @param <ResponseType>
* 須要合併的HystrixCommand的返回類型。
* @param <RequestArgumentType>
* 須要合併的HystrixCommand的請求參數類型。
*/
public abstract class HystrixCollapser<BatchReturnType, ResponseType, RequestArgumentType> implements HystrixExecutable<ResponseType>, HystrixObservable<ResponseType> {
複製代碼
請求合併的過程,從例子能夠看出,合併後的BatchCommand
的參數爲Collection<CollapsedRequest<String, Integer>> requests
,即請求合併的過程就是從單個請求的參數合併成Collection<CollapsedRequest<ResponseType, RequestArgumentType>>
。less
所以,能夠從getRequestArgument
的調用入手,就找到了HystrixCollapser.toObservable
。ide
// 提交請求,直接返回結果了。。。
Observable<ResponseType> response = requestCollapser.submitRequest(getRequestArgument());
/** * Submit a request to a batch. If the batch maxSize is hit trigger the batch immediately. * 和清楚了將時間窗口內的請求提交,若是到了設定的合併閾值,觸發一次合併請求 * @param arg argument to a {@link RequestCollapser} * @return Observable<ResponseType> * @throws IllegalStateException * if submitting after shutdown */
public Observable<ResponseType> submitRequest(final RequestArgumentType arg) {
/* * 啓動計時器,時間窗口閾值到了,則觸發一次合併請求 */
if (!timerListenerRegistered.get() && timerListenerRegistered.compareAndSet(false, true)) {
/* schedule the collapsing task to be executed every x milliseconds (x defined inside CollapsedTask) */
timerListenerReference.set(timer.addListener(new CollapsedTask()));
}
// loop until succeed (compare-and-set spin-loop)
// 等待-通知模型
while (true) {
// 拿到RequestBatch
final RequestBatch<BatchReturnType, ResponseType, RequestArgumentType> b = batch.get();
if (b == null) {
return Observable.error(new IllegalStateException("Submitting requests after collapser is shutdown"));
}
final Observable<ResponseType> response;
// 添加到RequestBatch
if (arg != null) {
response = b.offer(arg);
} else {
response = b.offer( (RequestArgumentType) NULL_SENTINEL);
}
// it will always get an Observable unless we hit the max batch size
// 添加成功,返回 Observable
if (response != null) {
return response;
} else {
// this batch can't accept requests so create a new one and set it if another thread doesn't beat us
// 添加失敗,執行 RequestBatch ,並建立新的 RequestBatch
createNewBatchAndExecutePreviousIfNeeded(b);
}
}
}
複製代碼
offer
方法public Observable<ResponseType> offer(RequestArgumentType arg) {
2: // 執行已經開始,添加失敗
3: /* short-cut - if the batch is started we reject the offer */
4: if (batchStarted.get()) {
5: return null;
6: }
7:
8: /* 9: * The 'read' just means non-exclusive even though we are writing. 10: */
11: if (batchLock.readLock().tryLock()) {
12: try {
13: // 執行已經開始,添加失敗
14: /* double-check now that we have the lock - if the batch is started we reject the offer */
15: if (batchStarted.get()) {
16: return null;
17: }
18:
19: // 超過隊列最大長度,添加失敗
20: if (argumentMap.size() >= maxBatchSize) {
21: return null;
22: } else {
23: // 建立 CollapsedRequestSubject ,並添加到隊列
24: CollapsedRequestSubject<ResponseType, RequestArgumentType> collapsedRequest = new CollapsedRequestSubject<ResponseType, RequestArgumentType>(arg, this);
25: final CollapsedRequestSubject<ResponseType, RequestArgumentType> existing = (CollapsedRequestSubject<ResponseType, RequestArgumentType>) argumentMap.putIfAbsent(arg, collapsedRequest);
26: /** 27: * If the argument already exists in the batch, then there are 2 options: 28: * A) If request caching is ON (the default): only keep 1 argument in the batch and let all responses 29: * be hooked up to that argument 30: * B) If request caching is OFF: return an error to all duplicate argument requests 31: * 32: * This maintains the invariant that each batch has no duplicate arguments. This prevents the impossible 33: * logic (in a user-provided mapResponseToRequests for HystrixCollapser and the internals of HystrixObservableCollapser) 34: * of trying to figure out which argument of a set of duplicates should get attached to a response. 35: * 36: * See https://github.com/Netflix/Hystrix/pull/1176 for further discussion. 37: */
38: if (existing != null) {
39: boolean requestCachingEnabled = properties.requestCacheEnabled().get();
40: if (requestCachingEnabled) {
41: return existing.toObservable();
42: } else {
43: return Observable.error(new IllegalArgumentException("Duplicate argument in collapser batch : [" + arg + "] This is not supported. Please turn request-caching on for HystrixCollapser:" + commandCollapser.getCollapserKey().name() + " or prevent duplicates from making it into the batch!"));
44: }
45: } else {
46: return collapsedRequest.toObservable();
47: }
48:
49: }
50: } finally {
51: batchLock.readLock().unlock();
52: }
53: } else {
54: return null;
55: }
56: }
複製代碼
第 38 至 47 行 :返回Observable
。當argumentMap
已經存在arg
對應的Observable
時,必須開啓緩存 ( HystrixCollapserProperties.requestCachingEnabled = true
) 功能。緣由是,若是在相同的arg
,而且未開啓緩存,同時第 43 行實現的是collapsedRequest.toObservable()
,那麼相同的arg
將有多個Observable
執行命令,此時HystrixCollapserBridge.mapResponseToRequests
方法沒法將執行(Response
)賦值到arg
對應的命令請求( CollapsedRequestSubject
) ,見 github.com/Netflix/Hys… 。oop
回過頭看HystrixCollapser#toObservable()
方法的代碼,這裏也有對緩存功能,是否是重複了呢?argumentMap
針對的是RequestBatch
級的緩存,HystrixCollapser
: RequestCollapser
: RequestBatch
是 1 : 1 : N 的關係,經過 HystrixCollapser#toObservable()
對緩存的處理邏輯,保證 RequestBatch
切換後,依然有緩存。fetch
CollapsedTask
負責觸發時間窗口內合併請求的處理,其實關鍵方法就是createNewBatchAndExecutePreviousIfNeeded
,而且也調用了executeBatchIfNotAlreadyStarted
。this
/** * Executed on each Timer interval execute the current batch if it has requests in it. */
private class CollapsedTask implements TimerListener {
...
@Override
public Void call() throws Exception {
try {
// we fetch current so that when multiple threads race
// we can do compareAndSet with the expected/new to ensure only one happens
// 拿到合併請求
RequestBatch<BatchReturnType, ResponseType, RequestArgumentType> currentBatch = batch.get();
// 1) it can be null if it got shutdown
// 2) we don't execute this batch if it has no requests and let it wait until next tick to be executed
// 處理合並請求
if (currentBatch != null && currentBatch.getSize() > 0) {
// do execution within context of wrapped Callable
createNewBatchAndExecutePreviousIfNeeded(currentBatch);
}
} catch (Throwable t) {
logger.error("Error occurred trying to execute the batch.", t);
t.printStackTrace();
// ignore error so we don't kill the Timer mainLoop and prevent further items from being scheduled
}
return null;
}
});
}
複製代碼
executeBatchIfNotAlreadyStarted
中對請求進行了合併及執行!!!一、調用
HystrixCollapserBridge.shardRequests
方法,將多個命令請求分片成 N 個【多個命令請求】。默認實現下,不進行分片。 二、循環 N 個【多個命令請求】。 三、調用HystrixCollapserBridge.createObservableCommand
方法,將多個命令請求合併,建立一個 HystrixCommand 。點擊 連接 查看代碼。
...
// shard batches
Collection<Collection<CollapsedRequest<ResponseType, RequestArgumentType>>> shards = commandCollapser.shardRequests(argumentMap.values());
// for each shard execute its requests
for (final Collection<CollapsedRequest<ResponseType, RequestArgumentType>> shardRequests : shards) {
try {
// create a new command to handle this batch of requests
Observable<BatchReturnType> o = commandCollapser.createObservableCommand(shardRequests);
commandCollapser.mapResponseToRequests(o, shardRequests).doOnError(new Action1<Throwable>() {
...
複製代碼
mapResponseToRequests
的方法將一個HystrixCommand
的執行結果,映射回對應的命令請求們。BatchCommand
執行,將最後結果再映射爲合併前HystrixCommand
的結果返回。PS:又見到了好多concurrentHashMap
,CAS,Atomic變量。。。