LaTeX 算法代碼排版 --latex2e範例總結

LaTeX 寫做: 算法代碼排版 --latex2e範例總結算法

 

latex2e 宏包的使用範例:ide

 

  • \usepackage[ruled]{algorithm2e}                                     %算法排版樣式1
  • \usepackage[ruled,vlined]{algorithm2e}                          %算法排版樣式2
  • \usepackage[linesnumbered,boxed]{algorithm2e}        %算法排版樣式3

 

使用上述代碼中三種不一樣的宏包編譯後的代碼排版樣式預覽:this

樣式一:spa

樣式二:3d

樣式三:rest

 

latex代碼排版.tex文件: code

 

\documentclass{article}
\usepackage[ruled]{algorithm2e}
%算法排版樣式1 %\usepackage[ruled,vlined]{algorithm2e} %算法排版樣式2 %\usepackage[linesnumbered,boxed]{algorithm2e} %算法排版樣式3
\begin{document} How to use the algorithm2e
in \LaTeX ~ file. Examples:
% ------------------------------Example - 1--------------------------------------------- \begin{algorithm}[H] \caption{How to write algorithms} \KwIn{this text} \KwOut{how to write algorithm with \LaTeX2e } initialization\; \While{not at end of this document}{ read current\; \eIf{understand} { go to next section\; current section becomes this one\; } { go back to the beginning of current section\; } } \end{algorithm} % ---------------------------Example - 2------------------------------------------------ \begin{algorithm} % \SetAlgoNoLine %去掉以前的豎線 \caption{identifyRowContext} \KwIn{$r_i$, $Backgrd(T_i)$=${T_1,T_2,\ldots ,T_n}$ and similarity threshold $\theta_r$} \KwOut{$con(r_i)$} $con(r_i)= \Phi$\; \For{$j=1;j \le n;j \ne i$} { float $maxSim=0$\; $r^{maxSim}=null$\; \While{not end of $T_j$} { compute Jaro($r_i,r_m$)($r_m\in T_j$)\; \If{$(Jaro(r_i,r_m) \ge \theta_r)\wedge (Jaro(r_i,r_m)\ge r^{maxSim})$} { replace $r^{maxSim}$ with $r_m$\; } } $con(r_i)=con(r_i)\cup {r^{maxSim}}$\; } return $con(r_i)$\; \end{algorithm} %--------------------------------------------------------------------------------------
some special information The algorithm2e LaTeX package conflicts with several others over the use of the algorithm identifier. A common indicator
is something like this message: To resolve the issues, simply put the following just before the inclusion of the algorithm2e package: %\makeatletter %\newif\if@restonecol %\makeatother %\let\algorithm\relax %\let\endalgorithm\relax \end{document}

 中文latex模式下,更改Input爲輸入,更改Output爲輸出的方法: 在算法內部插入、orm

 

\SetKwInOut{KIN}{輸入}blog

\SetKwInOut{KOUT}{輸出}ci

 

用咱們定義的新的宏名「\KIN」 在算法開頭相應位置替換掉自帶的\KwInput,用"\KOUT" 替換掉\KwOutput 便可,實現中文的輸入和輸出.

具體事例以下:

 

 1 \renewcommand{\algorithmcfname}{算法}  2 \begin{algorithm}[H]
 3 %\SetAlgoNoLine
 4 \SetKwInOut{KIN}{輸入} 5 \SetKwInOut{KOUT}{輸出}  6 %\BlankLine  %空一行
 7     \caption{標準DE算法 }
 8     \label{DE_algo} %
 9  \KIN{Population: $ M$; Dimension: $ D $; Genetation: $ T $ }
10  \KOUT{The best vector (solution)  $ \varDelta $ }
11     $ t \leftarrow 1 (initialization) $\;
12     \For{$i=1$ to $ M $    }
13     {\For{$j=1$ to $ D $}
14         {
15             $  {x}_{i,t}^j=x_{min}^j + rand(0,1)\cdotp (x_{max}^j-x_{min}^j) $\;
16         }
17     }        
18     %--------------------------------------------------    
19 \While{$(|f(\varDelta)| \geq\varepsilon )$      or     $(t \leq T )$}
20     {
21         \For{$ i=1$  to $M$}
22         {
23 \emph{$ \blacktriangleright $ (Mutation and Crossover)}\\            
24 %\textit{ $ \blacktriangleright $ (Mutation and Crossover) }\\
25             \For{$j=1$ to $ D $}
26             {    
27                 $ v_{i,t}^j =Mutation(x_{i,t}^j)$\;    
28                 $ u_{i,t}^j =Crossover(x_{i,t}^j,v_{i,t}^j)$\;
29             }
30 \emph{$ \blacktriangleright $ (Greedy Selection)}\\
31             %\textit{ $ \blacktriangleright $ (Greedy Selection) }\\
32             \eIf{$ f(\textbf{u}_{i,t}) <  f(\textbf{x}_{i,t}) $}
33             {
34                 $  \textbf{x}_{i,t} \leftarrow\textbf{u}_{i,t}$\;    
35                 \If{$  f(\textbf{x}_{i,t}) < f(\varDelta)$}
36                 {
37                     $ \varDelta \leftarrow \textbf{x}_{i,t}$ \;
38                 }
39             }
40             {
41                 $  \textbf{x}_{i,t} \leftarrow \textbf{x}_{i,t} $\;
42             }
43         }
44         $ t \leftarrow t+1 $\;    
45     }    %While        
46     \Return the best vector  $\varDelta$\;
47 \end{algorithm}
相關文章
相關標籤/搜索