04-樹7 二叉搜索樹的操做集(30 point(s)) 【Tree】

04-樹7 二叉搜索樹的操做集(30 point(s))bash

本題要求實現給定二叉搜索樹的5種經常使用操做。
函數接口定義:函數

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree結構定義以下:測試

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
函數Insert將X插入二叉搜索樹BST並返回結果樹的根結點指針;
函數Delete將X從二叉搜索樹BST中刪除,並返回結果樹的根結點指針;若是X不在樹中,則打印一行Not Found並返回原樹的根結點指針;
函數Find在二叉搜索樹BST中找到X,返回該結點的指針;若是找不到則返回空指針;
函數FindMin返回二叉搜索樹BST中最小元結點的指針;
函數FindMax返回二叉搜索樹BST中最大元結點的指針。

裁判測試程序樣例:ui

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍歷,由裁判實現,細節不表 */
void InorderTraversal( BinTree BT );  /* 中序遍歷,由裁判實現,細節不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代碼將被嵌在這裏 */

輸入樣例:spa

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3指針

輸出樣例:code

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9遞歸

思路接口

先序遍歷 是 根 左 右
中序遍歷 是 左 根 右string

插入就是 若是目標比當前的結點大 就往右 遞歸 比當前結點小 往左遞歸
碰到 NULL 就插入

而後刪除

若是左右子樹都存在

那麼就找右子樹的最小結點來替代當前結點

若是右子數不存在 直接把左子樹接過來
若是左子樹不存在 直接把右子數接過來

AC代碼

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍歷,由裁判實現,細節不表 */
void InorderTraversal( BinTree BT );  /* 中序遍歷,由裁判實現,細節不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代碼將被嵌在這裏 */
void PreorderTraversal( BinTree BT )
{
    if (BT == NULL)
        return;
    printf(" %d", BT->Data);
    PreorderTraversal( BT->Left);
    PreorderTraversal( BT->Right);
}

void InorderTraversal( BinTree BT )
{
    if (BT == NULL)
        return;
    InorderTraversal( BT->Left );
    printf(" %d", BT->Data);
    InorderTraversal( BT->Right);
}

BinTree Insert( BinTree BST, ElementType X )
{
    if (BST == NULL)
    {
        BST = (BinTree) malloc(sizeof(struct TNode));
        BST->Data = X;
        BST->Left = NULL;
        BST->Right = NULL;
    }
    else if (X > BST->Data)
        BST->Right = Insert(BST->Right, X);
    else if (X < BST->Data)
        BST->Left = Insert(BST->Left, X);
    return BST;
}

Position Find( BinTree BST, ElementType X )
{
    if (BST == NULL)
        return NULL;
    else if (X == BST->Data)
        return BST;
    else if (X > BST->Data)
        return Find (BST->Right, X);
    else if (X < BST->Data)
        return Find (BST->Left, X);
}

Position FindMin( BinTree BST )
{
    if (BST == NULL)
        return NULL;
    while (BST->Left != NULL)
        BST = BST->Left;
    return BST;
}

Position FindMax( BinTree BST )
{
    if (BST == NULL)
        return NULL;
    while (BST->Right != NULL)
        BST = BST->Right;
    return BST;
}

BinTree Delete( BinTree BST, ElementType X )
{
    BinTree temp;
    if (BST == NULL)
        printf("Not Found\n");
    else
    {
        if (X < BST->Data)
            BST->Left = Delete(BST->Left, X);
        else if (X > BST->Data)
            BST->Right = Delete(BST->Right, X);
        else
        {
            if (BST->Left && BST->Right)
            {
                temp = FindMin(BST->Right);
                BST->Data = temp->Data;
                BST->Right = Delete(BST->Right, temp->Data);
            }
            else
            {
                temp = BST;
                if (BST->Left == NULL)
                    BST = BST->Right;
                else if (BST->Right == NULL)
                    BST = BST->Left;
                free(temp);
            }
        }
    }
    return BST;
}
相關文章
相關標籤/搜索