ConcurrentHashMap (JDK 1.7)的繼承關係以下: java
1. ConcurrentHashMap是線程安全的hash map。ConcurrentHashMap的數據結構是一個Segment<K, V>數組:node
/** * The segments, each of which is a specialized hash table. */ final Segment<K,V>[] segments;
Segment數組segments的每個元素都包含一個HashEntry<K, V>數組table,這個table相似於HashMap中的table。所以ConcurrentHashMap的存儲結構實際上是兩層,經過兩次hash來定位元素所在的鏈表,圖示結構以下:
其中,HashEntry的定義以下:數組
/** * ConcurrentHashMap list entry. Note that this is never exported * out as a user-visible Map.Entry. */ static final class HashEntry<K,V> { final int hash; final K key; volatile V value; volatile HashEntry<K,V> next; }
所以,Segment數組的意義就是將一個大的table分割成多個小的table來進行加鎖(即,鎖分離技術),而每個Segment元素存儲的是HashEntry數組+鏈表,和HashMap的數據存儲結構同樣。安全
2. Segment是靜態static final類,數據結構
static final class Segment<K,V> extends ReentrantLock implements Serializable {}
他有本身的成員變量和方法:併發
成員變量: app
table: 表示每一個segment的數組ssh
count: 表示元素個數函數
modCount: 表示table被修改的次數this
threshold: 表示table須要擴容的閾值
loadFactor: 表示table的負載因子,超過負載因子以後table會擴容
方法:
Segment繼承了ReentrantLock類,因此他自帶鎖功能,在其方法中能夠體現出來。
a. put()方法
final V put(K key, int hash, V value, boolean onlyIfAbsent) { HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value); V oldValue; try { HashEntry<K,V>[] tab = table; int index = (tab.length - 1) & hash;
// HashEntry<K,V> first = entryAt(tab, index); for (HashEntry<K,V> e = first;;) { if (e != null) { K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; ++modCount; } break; } e = e.next; } else { if (node != null) node.setNext(first); else node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); else setEntryAt(tab, index, node); ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); } return oldValue; }
b. rehash()方法
/** * Doubles size of table and repacks entries, also adding the * given node to new table */ @SuppressWarnings("unchecked") private void rehash(HashEntry<K,V> node) { /* * Reclassify nodes in each list to new table. Because we * are using power-of-two expansion, the elements from * each bin must either stay at same index, or move with a * power of two offset. We eliminate unnecessary node * creation by catching cases where old nodes can be * reused because their next fields won't change. * Statistically, at the default threshold, only about * one-sixth of them need cloning when a table * doubles. The nodes they replace will be garbage * collectable as soon as they are no longer referenced by * any reader thread that may be in the midst of * concurrently traversing table. Entry accesses use plain * array indexing because they are followed by volatile * table write. */ HashEntry<K,V>[] oldTable = table; int oldCapacity = oldTable.length; int newCapacity = oldCapacity << 1; threshold = (int)(newCapacity * loadFactor); HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity]; int sizeMask = newCapacity - 1; for (int i = 0; i < oldCapacity ; i++) { HashEntry<K,V> e = oldTable[i]; if (e != null) { HashEntry<K,V> next = e.next; int idx = e.hash & sizeMask; if (next == null) // Single node on list newTable[idx] = e; else { // Reuse consecutive sequence at same slot HashEntry<K,V> lastRun = e; int lastIdx = idx; for (HashEntry<K,V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone remaining nodes for (HashEntry<K,V> p = e; p != lastRun; p = p.next) { V v = p.value; int h = p.hash; int k = h & sizeMask; HashEntry<K,V> n = newTable[k]; newTable[k] = new HashEntry<K,V>(h, p.key, v, n); } } } } int nodeIndex = node.hash & sizeMask; // add the new node node.setNext(newTable[nodeIndex]); newTable[nodeIndex] = node; table = newTable; }
這些都是Segment類本身的方法,不是ConcurrentHashMap()的方法。
3. ConcurrentHashMap一樣會有的本身的put() / get() / remove()等方法,是在Segment類的方法上實現的。
ConcurrentHashMap默認構造函數爲:
/** * Creates a new, empty map with a default initial capacity (16), * load factor (0.75) and concurrencyLevel (16). */ public ConcurrentHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); }
this有3個參數:
a. DEFAULT_INITIAL_CAPACITY,表示table的默認大小
/** * The default initial capacity for this table, * used when not otherwise specified in a constructor. */ static final int DEFAULT_INITIAL_CAPACITY = 16;
b. DEFAULT_LOAD_FACTOR,表示table的負載因子
/** * The default load factor for this table, used when not * otherwise specified in a constructor. */ static final float DEFAULT_LOAD_FACTOR = 0.75f;
c. DEFAULT_CONCURRENCY_LEVEL,表示table默認的併發度,也就是segments數組的大小!!
/** * The default concurrency level for this table, used when not * otherwise specified in a constructor. */ static final int DEFAULT_CONCURRENCY_LEVEL = 16;
this調用了:
/** * Creates a new, empty map with the specified initial * capacity, load factor and concurrency level. * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently * updating threads. The implementation performs internal sizing * to try to accommodate this many threads. * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurrencyLevel are * nonpositive. */ @SuppressWarnings("unchecked") public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments、 // 尋找大於等於concurrencyLevel的一個整數ssize,這個整數是2的倍數,默認值應該是16 int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } this.segmentShift = 32 - sshift; this.segmentMask = ssize - 1; // initialCapacity的默認是是table數組的大小(默認爲16) if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; // c默認值是16 / 16 = 1 int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; // MIN_SEGMENT_TABLE_CAPACITY表示每一個segment中table的最小容量(默認爲2) int cap = MIN_SEGMENT_TABLE_CAPACITY; while (cap < c) cap <<= 1; // create segments and segments[0] Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]); Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] this.segments = ss; }
ConcurrentHashMap的put()方法:
/** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * * <p> The value can be retrieved by calling the <tt>get</tt> method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt> * @throws NullPointerException if the specified key or value is null */ @SuppressWarnings("unchecked") public V put(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); // 此處的hash()方法是屬於ConcurrentHashMap類,Segment的put()方法使用的hash方式是(table.length - 1) & hash,這個hash值是調用的ConcurrentHashMap的hash()方法產生的 int hash = hash(key); // j表示segment的索引 int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment // 獲取第j個segment s = ensureSegment(j); // 這裏的put()方法是Segment的方法 return s.put(key, hash, value, false); }
get()方法
/** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ public V get(Object key) { Segment<K,V> s; // manually integrate access methods to reduce overhead HashEntry<K,V>[] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }
remove()方法
/** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt> * @throws NullPointerException if the specified key is null */ public V remove(Object key) { int hash = hash(key); Segment<K,V> s = segmentForHash(hash); return s == null ? null : s.remove(key, hash, null); }
segmentForHash()方法,經過hash值獲取相應segment
/** * Get the segment for the given hash */ @SuppressWarnings("unchecked") private Segment<K,V> segmentForHash(int h) { long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u); }