JavaShuo
欄目
標籤
bernoulli數
時間 2021-01-21
原文
原文鏈接
LL B[N][2],C[N][N],f[N][2]; int n,m; LL gcd(LL a,LL b){return b?gcd(b,a%b):a;} LL lcm(LL a,LL b){return a/gcd(a,b)*b;} void getC(int n) { int i,j; n++; for(i=0;i<=n;i++)C[i][0]=C[i]
>>阅读原文<<
相關文章
1.
天然數冪和&伯努利數(Bernoulli)
2.
simulink中 Bernoulli binary generator(貝努力二進制產生器)各個參數
3.
化 Bernoulli 方程爲一階線性微分方程
4.
樸素貝葉斯模型 多元伯努利事件模型+多項式事件模型 Multi-Variate Bernoulli Event Model and Multinomial Event Model
5.
機器學習(十)——指數族(The exponential family)
6.
離散隨機分佈
7.
【源碼】深度神經網絡工具箱——提供深度信念網絡(DBNs)的深度學習工具
8.
淺談壓縮感知(三十二):壓縮感知的常見測量矩陣
9.
關於狄利克雷分佈的理解
10.
機器學習數學基礎——概率論與貝葉斯先驗
更多相關文章...
•
C# 參數數組
-
C#教程
•
Scala 函數 - 可變參數
-
Scala教程
•
Flink 數據傳輸及反壓詳解
•
TiDB 在摩拜單車在線數據業務的應用和實踐
相關標籤/搜索
bernoulli
數數
代數函數
指數函數
數學函數
對數函數
指數函數+對數函數
數組和函數
指數
Redis教程
NoSQL教程
MySQL教程
數據傳輸
數據庫
數據業務
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github並且新建倉庫push代碼,從已有倉庫clone代碼,並且push
3.
設計模式9——模板方法模式
4.
avue crud form組件的快速配置使用方法詳細講解
5.
python基礎B
6.
從零開始···將工程上傳到github
7.
Eclipse插件篇
8.
Oracle網絡服務 獨立監聽的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目錄管理命令基礎
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
天然數冪和&伯努利數(Bernoulli)
2.
simulink中 Bernoulli binary generator(貝努力二進制產生器)各個參數
3.
化 Bernoulli 方程爲一階線性微分方程
4.
樸素貝葉斯模型 多元伯努利事件模型+多項式事件模型 Multi-Variate Bernoulli Event Model and Multinomial Event Model
5.
機器學習(十)——指數族(The exponential family)
6.
離散隨機分佈
7.
【源碼】深度神經網絡工具箱——提供深度信念網絡(DBNs)的深度學習工具
8.
淺談壓縮感知(三十二):壓縮感知的常見測量矩陣
9.
關於狄利克雷分佈的理解
10.
機器學習數學基礎——概率論與貝葉斯先驗
>>更多相關文章<<