在運行mapreduce的時候,出現Error: GC overhead limit exceeded,查看log日誌,發現異常信息爲java
2015-12-11 11:48:44,716 FATAL [main] org.apache.hadoop.mapred.YarnChild: Error running child : java.lang.OutOfMemoryError: GC overhead limit exceeded at java.io.DataInputStream.readUTF(DataInputStream.java:661) at java.io.DataInputStream.readUTF(DataInputStream.java:564) at xxxx.readFields(DateDimension.java:186) at xxxx.readFields(StatsUserDimension.java:67) at xxxx.readFields(StatsBrowserDimension.java:68) at org.apache.hadoop.io.WritableComparator.compare(WritableComparator.java:158) at org.apache.hadoop.mapreduce.task.ReduceContextImpl.nextKeyValue(ReduceContextImpl.java:158) at org.apache.hadoop.mapreduce.task.ReduceContextImpl$ValueIterator.next(ReduceContextImpl.java:239) at xxx.reduce(BrowserReducer.java:37) at xxx.reduce(BrowserReducer.java:16) at org.apache.hadoop.mapreduce.Reducer.run(Reducer.java:171) at org.apache.hadoop.mapred.ReduceTask.runNewReducer(ReduceTask.java:627) at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:389) at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:168) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:415) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1614) at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:163)
從異常中咱們能夠看到,在reduce讀取一下個數據的時候,出現內存不夠的問題,從代碼中我發現再reduce端使用了讀個map集合,這樣會致使內存不夠的問題。在hadoop2.x中默認Container的yarn child jvm堆大小爲200M,經過參數mapred.child.java.opts指定,能夠在job提交的時候給定,是一個客戶端生效的參數,配置在mapred-site.xml文件中,經過將該參數修改成-Xms200m -Xmx1000m來更改jvm堆大小,異常解決。apache
參數名稱 | 默認值 | 描述 |
mapred.child.java.opts | -Xmx200m | 定義mapreduce執行的container容器的執行jvm參數 |
mapred.map.child.java.opts | 單獨指定map階段的執行jvm參數 | |
mapred.reduce.child.java.opts | 單獨指定reduce階段的執行jvm參數 | |
mapreduce.admin.map.child.java.opts |
-Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN
|
管理員指定map階段執行的jvm參數 |
mapreduce.admin.reduce.child.java.opts |
-Djava.net.preferIPv4Stack=true -Dhadoop.metrics.log.level=WARN
|
管理員指定reduce階段的執行jvm參數 |
上述五個參數生效的分別執行順序爲:jvm
map階段:mapreduce.admin.map.child.java.opts < mapred.child.java.opts < mapred.map.child.java.opts, 也就是說最終會採用mapred.map.child.java.opts定義的jvm參數,若是有衝突的話。oop
reduce階段:mapreduce.admin.reduce.child.java.opts < mapred.child.java.opts < mapred.reduce.child.java.optsspa
hadoop源碼參考:org.apache.hadoop.mapred.MapReduceChildJVM.getChildJavaOpts方法。.net
private static String getChildJavaOpts(JobConf jobConf, boolean isMapTask) { String userClasspath = ""; String adminClasspath = ""; if (isMapTask) { userClasspath = jobConf.get(JobConf.MAPRED_MAP_TASK_JAVA_OPTS, jobConf.get(JobConf.MAPRED_TASK_JAVA_OPTS, JobConf.DEFAULT_MAPRED_TASK_JAVA_OPTS)); adminClasspath = jobConf.get( MRJobConfig.MAPRED_MAP_ADMIN_JAVA_OPTS, MRJobConfig.DEFAULT_MAPRED_ADMIN_JAVA_OPTS); } else { userClasspath = jobConf.get(JobConf.MAPRED_REDUCE_TASK_JAVA_OPTS, jobConf.get(JobConf.MAPRED_TASK_JAVA_OPTS, JobConf.DEFAULT_MAPRED_TASK_JAVA_OPTS)); adminClasspath = jobConf.get( MRJobConfig.MAPRED_REDUCE_ADMIN_JAVA_OPTS, MRJobConfig.DEFAULT_MAPRED_ADMIN_JAVA_OPTS); } // Add admin classpath first so it can be overridden by user. return adminClasspath + " " + userClasspath; }