【機器學習】正則化的線性迴歸 —— 嶺迴歸與Lasso迴歸

注:正則化是用來防止過擬合的方法。在最開始學習機器學習的課程時,只是覺得這個方法就像某種魔法一樣非常神奇的改變了模型的參數。但是一直也無法對其基本原理有一個透徹、直觀的理解。直到最近再次接觸到這個概念,經過一番苦思冥想後終於有了我自己的理解。   0. 正則化(Regularization ) 前面使用多項式迴歸,如果多項式最高次項比較大,模型就容易出現過擬合。正則化是一種常見的防止過擬合的方法,
相關文章
相關標籤/搜索