Face alignment at 3000FPS via Regressing Local Binrary features 理解

這篇是Ren Shaoqing發表在cvpr2014上的paper,論文是在CPR框架下作的,想了解CPR的同窗能夠參見我以前的博客,網上有同窗給出了code,該code部分實現了LBF,連接爲https://github.com/jwyang/face-alignment。下面介紹算法的整個流程。node

簡單的說,該算法利用random forest和shape indexed features獲得local binary features,而後利用linear regression 求解regressor,檢測時利用訓練獲得的feature mapping和linear projection得倒update shape ΔS,而後與上一個stage相加獲得當前stage的shape,以後不斷迭代直到迭代結束。下面我會根據code作詳細的描述。git

算法分爲train和test兩個部分,首先介紹train.m,詳細的介紹會在code中給出github

%TRAIN_MODEL Summary of this function goes here
%   Function: train face alignment model
%   Detailed explanation goes here
%   Input:
%       dbnames: the names of database
% Configure the parameters for training model
global params;
global Tr_Data;
config_tr;
%這裏COFW是paper rcpr中用到的數據庫,該數據庫與lfpw,helen等不一樣的地方在於每一個shape的標籤中包含是否受遮擋。
if size(dbnames) > 1 & sum(strcmp(dbnames, 'COFW')) > 0
    disp('Sorry, COFW cannnot be combined with others')
    return;
end
%讀取meanshape
if sum(strcmp(dbnames, 'COFW')) > 0
    load('../initial_shape/InitialShape_29.mat');
    params.meanshape        = S0;
else
    load('../initial_shape/InitialShape_68.mat');
    params.meanshape        = S0;
end

%是否選擇並行計算
if params.isparallel
    disp('Attention, if error occurs, plese ensure you used the correct version of parallel initialization.');
    
    if isempty(gcp('nocreate'))
        parpool(4);
    else
        disp('Already initialized');
    end
    
    %{
    if matlabpool('size') <= 0
        matlabpool('open','local',4);
    else
        disp('Already initialized');
    end
    %}
end

% load trainning data from hardware
Tr_Data    = [];
% Tr_Bboxes  = [];
for i = 1:length(dbnames)
    % load training samples (including training images, and groundtruth shapes)
    imgpathlistfile = strcat('..\datasets\', dbnames{i}, '\Path_Images.txt');
    tr_data = loadsamples(imgpathlistfile, 2);%讀取數據
    Tr_Data = [Tr_Data; tr_data];
end

% Augmentate data for traing: assign multiple initial shapes to each image
Data = Tr_Data; % (1:10:end);
Param = params;
%翻轉圖像,目的是爲了enlarge training data
if Param.flipflag % if conduct flipping
    Data_flip = cell(size(Data, 1), 1);
    for i = 1:length(Data_flip)
        Data_flip{i}.img_gray    = fliplr(Data{i}.img_gray);
        Data_flip{i}.width_orig  = Data{i}.width_orig;
        Data_flip{i}.height_orig = Data{i}.height_orig;    
        Data_flip{i}.width       = Data{i}.width;
        Data_flip{i}.height      = Data{i}.height; 
        
        Data_flip{i}.shape_gt    = flipshape(Data{i}.shape_gt);        
        Data_flip{i}.shape_gt(:, 1)  =  Data{i}.width - Data_flip{i}.shape_gt(:, 1);
        
        Data_flip{i}.bbox_gt        = Data{i}.bbox_gt;
        Data_flip{i}.bbox_gt(1)     = Data_flip{i}.width - Data_flip{i}.bbox_gt(1) - Data_flip{i}.bbox_gt(3);       
        
        Data_flip{i}.bbox_facedet        = Data{i}.bbox_facedet;
        Data_flip{i}.bbox_facedet(1)     = Data_flip{i}.width - Data_flip{i}.bbox_facedet(1) - Data_flip{i}.bbox_facedet(3);   
    end
    Data = [Data; Data_flip];
end

% choose corresponding points for training
for i = 1:length(Data)
    Data{i}.shape_gt = Data{i}.shape_gt(Param.ind_usedpts, :);%選取特定的landmark
    Data{i}.bbox_gt = getbbox(Data{i}.shape_gt);%根據ground truth shape 肯定bounding bbox
    
    % modify detection boxes 
    shape_facedet = resetshape(Data{i}.bbox_facedet, Param.meanshape);%將mean shape reproject face detection bbox上
    shape_facedet = shape_facedet(Param.ind_usedpts, :);
    Data{i}.bbox_facedet = getbbox(shape_facedet);
end

Param.meanshape        = S0(Param.ind_usedpts, :);%選取特定的landmark

dbsize = length(Data);
    
% load('Ts_bbox.mat');

augnumber = Param.augnumber;

    
for i = 1:dbsize        
    % initializ the shape of current face image by randomly selecting multiple shapes from other face images       
    % indice = ceil(dbsize*rand(1, augnumber));  

    indice_rotate = ceil(dbsize*rand(1, augnumber));  
    indice_shift  = ceil(dbsize*rand(1, augnumber));  
    scales        = 1 + 0.2*(rand([1 augnumber]) - 0.5);
    
    Data{i}.intermediate_shapes = cell(1, Param.max_numstage);
    Data{i}.intermediate_bboxes = cell(1, Param.max_numstage);
    
    Data{i}.intermediate_shapes{1} = zeros([size(Param.meanshape), augnumber]);
    Data{i}.intermediate_bboxes{1} = zeros([augnumber, size(Data{i}.bbox_gt, 2)]);
    
    Data{i}.shapes_residual = zeros([size(Param.meanshape), augnumber]);
    Data{i}.tf2meanshape = cell(augnumber, 1);
    Data{i}.meanshape2tf = cell(augnumber, 1);
        
    % if Data{i}.isdet == 1
    %    Data{i}.bbox_facedet = Data{i}.bbox_facedet*ts_bbox;
    % end     
    for sr = 1:params.augnumber
        if sr == 1
            % estimate the similarity transformation from initial shape to mean shape
            % Data{i}.intermediate_shapes{1}(:,:, sr) = resetshape(Data{i}.bbox_gt, Param.meanshape);
            % Data{i}.intermediate_bboxes{1}(sr, :) = Data{i}.bbox_gt;
            Data{i}.intermediate_shapes{1}(:,:, sr) = resetshape(Data{i}.bbox_facedet, Param.meanshape);%
            Data{i}.intermediate_bboxes{1}(sr, :) = Data{i}.bbox_facedet;
            
            meanshape_resize = resetshape(Data{i}.intermediate_bboxes{1}(sr, :), Param.meanshape);將mean shape reproject face detection bbox上
            %計算當前的shape與mean shape之間的類似性變換          
            Data{i}.tf2meanshape{1} = fitgeotrans(bsxfun(@minus, Data{i}.intermediate_shapes{1}(1:end,:, 1), mean(Data{i}.intermediate_shapes{1}(1:end,:, 1))), ...
                (bsxfun(@minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :)))), 'NonreflectiveSimilarity');
            Data{i}.meanshape2tf{1} = fitgeotrans((bsxfun(@minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :)))), ...
                bsxfun(@minus, Data{i}.intermediate_shapes{1}(1:end,:, 1), mean(Data{i}.intermediate_shapes{1}(1:end,:, 1))), 'NonreflectiveSimilarity');
                        
            % calculate the residual shape from initial shape to groundtruth shape under normalization scale
    
            shape_residual = bsxfun(@rdivide, Data{i}.shape_gt - Data{i}.intermediate_shapes{1}(:,:, 1), [Data{i}.intermediate_bboxes{1}(1, 3) Data{i}.intermediate_bboxes{1}(1, 4)]);
            % transform the shape residual in the image coordinate to the mean shape coordinate
            [u, v] = transformPointsForward(Data{i}.tf2meanshape{1}, shape_residual(:, 1)', shape_residual(:, 2)');
            Data{i}.shapes_residual(:, 1, 1) = u';
            Data{i}.shapes_residual(:, 2, 1) = v';
        else
            % randomly rotate the shape   
         
            % shape = resetshape(Data{i}.bbox_gt, Param.meanshape);       % Data{indice_rotate(sr)}.shape_gt
            shape = resetshape(Data{i}.bbox_facedet, Param.meanshape);       % Data{indice_rotate(sr)}.shape_gt
            %根據隨機選取的scale,rotation,translate計算新的初始shape而後投影到bbox上
            if params.augnumber_scale ~= 0
                shape = scaleshape(shape, scales(sr));
            end
            
            if params.augnumber_rotate ~= 0
                shape = rotateshape(shape);
            end
            
            if params.augnumber_shift ~= 0
                shape = translateshape(shape, Data{indice_shift(sr)}.shape_gt);
            end
            
            Data{i}.intermediate_shapes{1}(:, :, sr) = shape;
            Data{i}.intermediate_bboxes{1}(sr, :) = getbbox(shape);
            
            meanshape_resize = resetshape(Data{i}.intermediate_bboxes{1}(sr, :), Param.meanshape);
                        
            Data{i}.tf2meanshape{sr} = fitgeotrans(bsxfun(@minus, Data{i}.intermediate_shapes{1}(1:end,:, sr), mean(Data{i}.intermediate_shapes{1}(1:end,:, sr))), ...
                bsxfun(@minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :))), 'NonreflectiveSimilarity');
            Data{i}.meanshape2tf{sr} = fitgeotrans(bsxfun(@minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :))), ...
                bsxfun(@minus, Data{i}.intermediate_shapes{1}(1:end,:, sr), mean(Data{i}.intermediate_shapes{1}(1:end,:, sr))), 'NonreflectiveSimilarity');
                        
            shape_residual = bsxfun(@rdivide, Data{i}.shape_gt - Data{i}.intermediate_shapes{1}(:,:, sr), [Data{i}.intermediate_bboxes{1}(sr, 3) Data{i}.intermediate_bboxes{1}(sr, 4)]);
            [u, v] = transformPointsForward(Data{i}.tf2meanshape{1}, shape_residual(:, 1)', shape_residual(:, 2)');
            Data{i}.shapes_residual(:, 1, sr) = u';
            Data{i}.shapes_residual(:, 2, sr) = v';
            % Data{i}.shapes_residual(:, :, sr) = tformfwd(Data{i}.tf2meanshape{sr}, shape_residual(:, 1), shape_residual(:, 2));
        end
    end
end

% train random forests for each landmark
randf = cell(Param.max_numstage, 1);
Ws    = cell(Param.max_numstage, 1);

%{
if nargin > 2
    n = size(LBFRegModel_initial.ranf, 1);
    for i = 1:n
      randf(1:n, :) = LBFRegModel_initial.ranf;
    end
end
%}
%開始訓練
for s = 1:Param.max_numstage
    % learn random forest for s-th stage
    disp('train random forests for landmarks...');
    
    %{
    if isempty(randf{s})        
        if exist(strcat('randfs\randf', num2str(s), '.mat'))
            load(strcat('randfs\randf', num2str(s), '.mat'));
        else
            tic;            
            randf{s} = train_randomfs(Data, Param, s);
            toc;
            save(strcat('randfs\randf', num2str(s), '.mat'), 'randf', '-v7.3');
        end
    end
    %}   
    %利用隨機森林訓練得倒feature mapping
    if isempty(randf{s})
        tic;
        randf{s} = train_randomfs(Data, Param, s);
        toc;
    end
              
    % derive binary codes given learned random forest in current stage
    disp('extract local binary features...');
    
    tic;
    binfeatures = derivebinaryfeat(randf{s}, Data, Param, s);
    % save(strcat('LBFeats\LBFeats', num2str(s), '.mat'), 'binfeatures', '-v7.3');
    toc;
    
    % learn global linear regrassion given binary feature
    disp('learn global regressors...');
    tic;
    [W, Data] = globalregression(binfeatures, Data, Param, s);        
    Ws{s} = W;    
    % save(strcat('Ws\W', num2str(s), '.mat'), 'W', '-v7.3');
    toc;      
    
end
%保存regression model
LBFRegModel.ranf = randf;
LBFRegModel.Ws   = Ws;   

接下來介紹train_randomfs.m,該文件是利用隨機森林訓練得倒feature mapping,具體流程爲假設shape 有68個landmark,對每一個lanmark訓練一個隨機森林,每一個森林中包含多個決策樹,具體介紹見code。算法

function rfs = train_randomfs(Tr_Data, params, stage)
%TRAIN_RANDOMFS Summary of this function goes here
%   Function: train random forest for each landmark
%   Detailed explanation goes here
%   Input:
%        lmarkID: ID of landmark
%        stage: the stage of training process
%   Output:
%        randf: learned random forest
dbsize = length(Tr_Data);

% rf = cell(1, params.max_numtrees);
%這裏是將全部training data 按照必定的重合度分開,分開的data分別做爲訓練一個決策樹的data
overlap_ratio = params.bagging_overlap;

Q = floor(double(dbsize)/((1-params.bagging_overlap)*(params.max_numtrees)));


Data = cell(1, params.max_numtrees);
for t = 1:params.max_numtrees
    % calculate the number of samples for each random tree
    % train t-th random tree
    is = max(floor((t-1)*Q - (t-1)*Q*overlap_ratio + 1), 1);
    ie = min(is + Q, dbsize);
    Data{t} = Tr_Data(is:ie);
end


% divide local region into grid
params.radius = ([0:1/30:1]');
params.angles = 2*pi*[0:1/36:1]';

rfs = cell(length(params.meanshape), params.max_numtrees);
%數據的初始化
parfor i = 1:length(params.meanshape)
    rf = cell(1, params.max_numtrees);
    % disp(strcat(num2str(i), 'th landmark is processing...'));
    for t = 1:params.max_numtrees
        % disp(strcat('training', {''}, num2str(t), '-th tree for', {''}, num2str(lmarkID), '-th landmark'));
        
        % calculate the number of samples for each random tree
        % train t-th random tree
        is = max(floor((t-1)*Q - (t-1)*Q*overlap_ratio + 1), 1);
        ie = min(is + Q, dbsize);
        
        max_numnodes = 2^params.max_depth - 1;
        
        rf{t}.ind_samples = cell(max_numnodes, 1);%樣本的索引值
        rf{t}.issplit     = zeros(max_numnodes, 1);%是否分裂
        rf{t}.pnode       = zeros(max_numnodes, 1);%父親節點
        rf{t}.depth       = zeros(max_numnodes, 1);%深度
        rf{t}.cnodes      = zeros(max_numnodes, 2);%孩子節點
        rf{t}.isleafnode  = zeros(max_numnodes, 1);%是不是葉子節點
        rf{t}.feat        = zeros(max_numnodes, 4);%特徵
        rf{t}.thresh      = zeros(max_numnodes, 1);%閾值
        
        rf{t}.ind_samples{1} = 1:(ie - is + 1)*(params.augnumber);
        rf{t}.issplit(1)     = 0;
        rf{t}.pnode(1)       = 0;
        rf{t}.depth(1)       = 1;
        rf{t}.cnodes(1, 1:2) = [0 0];
        rf{t}.isleafnode(1)  = 1;
        rf{t}.feat(1, :)     = zeros(1, 4);
        rf{t}.thresh(1)      = 0;
        
        num_nodes = 1;
        num_leafnodes = 1;
        stop = 0;
        while(~stop)
            num_nodes_iter = num_nodes;
            num_split = 0;
            for n = 1:num_nodes_iter
                if ~rf{t}.issplit(n)
                    if rf{t}.depth(n) == params.max_depth % || length(rf{t}.ind_samples{n}) < 20
                        if rf{t}.depth(n) == 1
                            rf{t}.depth(n) = 1;
                        end
                        rf{t}.issplit(n) = 1;
                    else
                        % separate the samples into left and right path
                        
                        [thresh, feat, lcind, rcind, isvalid] = splitnode(i, rf{t}.ind_samples{n}, Data{t}, params, stage);%對每一個節點分裂爲左子樹和右子樹
                        
                        %{
                    if ~isvalid
                        rf{t}.feat(n, :)   = [0 0 0 0];
                        rf{t}.thresh(n)    = 0;
                        rf{t}.issplit(n)   = 1;
                        rf{t}.cnodes(n, :) = [0 0];
                        rf{t}.isleafnode(n)   = 1;
                        continue;
                    end
                        %}
                        
                        % set the threshold and featture for current node
                        rf{t}.feat(n, :)   = feat;
                        rf{t}.thresh(n)    = thresh;
                        rf{t}.issplit(n)   = 1;
                        rf{t}.cnodes(n, :) = [num_nodes+1 num_nodes+2];
                        rf{t}.isleafnode(n)   = 0;
                        
                        % add left and right child nodes into the random tree
                        
                        rf{t}.ind_samples{num_nodes+1} = lcind;
                        rf{t}.issplit(num_nodes+1)     = 0;
                        rf{t}.pnode(num_nodes+1)       = n;
                        rf{t}.depth(num_nodes+1)       = rf{t}.depth(n) + 1;
                        rf{t}.cnodes(num_nodes+1, :)   = [0 0];
                        rf{t}.isleafnode(num_nodes+1)     = 1;
                        
                        rf{t}.ind_samples{num_nodes+2} = rcind;
                        rf{t}.issplit(num_nodes+2)     = 0;
                        rf{t}.pnode(num_nodes+2)       = n;
                        rf{t}.depth(num_nodes+2)       = rf{t}.depth(n) + 1;
                        rf{t}.cnodes(num_nodes+2, :)   = [0 0];
                        rf{t}.isleafnode(num_nodes+2)  = 1;
                        
                        num_split = num_split + 1;
                        num_leafnodes = num_leafnodes + 1;
                        num_nodes     = num_nodes + 2;
                    end
                end
            end
            
            if num_split == 0
                stop = 1;
            else
                rf{t}.num_leafnodes = num_leafnodes;
                rf{t}.num_nodes     = num_nodes;           
                rf{t}.id_leafnodes = find(rf{t}.isleafnode == 1); 
            end            
        end
        
    end
    % disp(strcat(num2str(i), 'th landmark is over'));
    rfs(i, :) = rf;
end
end

function [thresh, feat, lcind, rcind, isvalid] = splitnode(lmarkID, ind_samples, Tr_Data, params, stage)

if isempty(ind_samples)
    thresh = 0;
    feat = [0 0 0 0];
    rcind = [];
    lcind = [];
    isvalid = 1;
    return;
end

% generate params.max_rand cndidate feature
% anglepairs = samplerandfeat(params.max_numfeat);
% radiuspairs = [rand([params.max_numfeat, 1]) rand([params.max_numfeat, 1])];
[radiuspairs, anglepairs] = getproposals(params.max_numfeats(stage), params.radius, params.angles);%隨機選取pixel值,這裏是隨機獲得半徑和角度

angles_cos = cos(anglepairs);
angles_sin = sin(anglepairs);
%shape indexed features是指隨機選取兩個landmark,而後在兩個landmark周圍隨機選取offest,得倒相對應的pixel值,將兩個pixel值相減獲得features
% extract pixel difference features from pairs
   
pdfeats = zeros(params.max_numfeats(stage), length(ind_samples));

shapes_residual = zeros(length(ind_samples), 2);

for i = 1:length(ind_samples)
    s = floor((ind_samples(i)-1)/(params.augnumber)) + 1;
    k = mod(ind_samples(i)-1, (params.augnumber)) + 1;
    
    % calculate the relative location under the coordinate of meanshape
    pixel_a_x_imgcoord = (angles_cos(:, 1)).*radiuspairs(:, 1)*params.max_raio_radius(stage)*Tr_Data{s}.intermediate_bboxes{stage}(k, 3);
    pixel_a_y_imgcoord = (angles_sin(:, 1)).*radiuspairs(:, 1)*params.max_raio_radius(stage)*Tr_Data{s}.intermediate_bboxes{stage}(k, 4);
    
    pixel_b_x_imgcoord = (angles_cos(:, 2)).*radiuspairs(:, 2)*params.max_raio_radius(stage)*Tr_Data{s}.intermediate_bboxes{stage}(k, 3);
    pixel_b_y_imgcoord = (angles_sin(:, 2)).*radiuspairs(:, 2)*params.max_raio_radius(stage)*Tr_Data{s}.intermediate_bboxes{stage}(k, 4);
    
    % no transformation
    %{
    pixel_a_x_lmcoord = pixel_a_x_imgcoord;
    pixel_a_y_lmcoord = pixel_a_y_imgcoord;
    
    pixel_b_x_lmcoord = pixel_b_x_imgcoord;
    pixel_b_y_lmcoord = pixel_b_y_imgcoord;
    %}
    
    % transform the pixels from image coordinate (meanshape) to coordinate of current shape
    
    [pixel_a_x_lmcoord, pixel_a_y_lmcoord] = transformPointsForward(Tr_Data{s}.meanshape2tf{k}, pixel_a_x_imgcoord', pixel_a_y_imgcoord');    
    pixel_a_x_lmcoord = pixel_a_x_lmcoord';
    pixel_a_y_lmcoord = pixel_a_y_lmcoord';
    
    [pixel_b_x_lmcoord, pixel_b_y_lmcoord] = transformPointsForward(Tr_Data{s}.meanshape2tf{k}, pixel_b_x_imgcoord', pixel_b_y_imgcoord');
    pixel_b_x_lmcoord = pixel_b_x_lmcoord';
    pixel_b_y_lmcoord = pixel_b_y_lmcoord';    
    
    pixel_a_x = int32(bsxfun(@plus, pixel_a_x_lmcoord, Tr_Data{s}.intermediate_shapes{stage}(lmarkID, 1, k)));
    pixel_a_y = int32(bsxfun(@plus, pixel_a_y_lmcoord, Tr_Data{s}.intermediate_shapes{stage}(lmarkID, 2, k)));
    
    pixel_b_x = int32(bsxfun(@plus, pixel_b_x_lmcoord, Tr_Data{s}.intermediate_shapes{stage}(lmarkID, 1, k)));
    pixel_b_y = int32(bsxfun(@plus, pixel_b_y_lmcoord, Tr_Data{s}.intermediate_shapes{stage}(lmarkID, 2, k)));
    
    width = (Tr_Data{s}.width);
    height = (Tr_Data{s}.height);

    pixel_a_x = max(1, min(pixel_a_x, width));
    pixel_a_y = max(1, min(pixel_a_y, height));
    
    pixel_b_x = max(1, min(pixel_b_x, width));
    pixel_b_y = max(1, min(pixel_b_y, height));
    
    pdfeats(:, i) = double(Tr_Data{s}.img_gray(pixel_a_y + (pixel_a_x-1)*height)) - double(Tr_Data{s}.img_gray(pixel_b_y + (pixel_b_x-1)*height));%計算shape indexed features
       %./ double(Tr_Data{s}.img_gray(pixel_a_y + (pixel_a_x-1)*height)) + double(Tr_Data{s}.img_gray(pixel_b_y + (pixel_b_x-1)*height));
    
    % drawshapes(Tr_Data{s}.img_gray, [pixel_a_x pixel_a_y pixel_b_x pixel_b_y]);
    % hold off;
    
    shapes_residual(i, :) = Tr_Data{s}.shapes_residual(lmarkID, :, k);
end

E_x_2 = mean(shapes_residual(:, 1).^2);
E_x = mean(shapes_residual(:, 1));

E_y_2 = mean(shapes_residual(:, 2).^2);
E_y = mean(shapes_residual(:, 2));
% 
var_overall = length(ind_samples)*((E_x_2 - E_x^2) + (E_y_2 - E_y^2));%計算方差

% var_overall = length(ind_samples)*(var(shapes_residual(:, 1)) + var(shapes_residual(:, 2)));

% max_step = min(length(ind_samples), params.max_numthreshs);
% step = floor(length(ind_samples)/max_step);
max_step = 1;

var_reductions = zeros(params.max_numfeats(stage), max_step);
thresholds = zeros(params.max_numfeats(stage), max_step);

[pdfeats_sorted] = sort(pdfeats, 2);%將特徵排序

% shapes_residual = shapes_residual(ind, :);

for i = 1:params.max_numfeats(stage)
    % for t = 1:max_step
    t = 1;
    ind = ceil(length(ind_samples)*(0.5 + 0.9*(rand(1) - 0.5)));
        threshold = pdfeats_sorted(i, ind);  % pdfeats_sorted(i, t*step); % 隨機選取閾值
        thresholds(i, t) = threshold;
        ind_lc = (pdfeats(i, :) < threshold);%小於閾值的樣本放入左子樹
        ind_rc = (pdfeats(i, :) >= threshold);%大於閾值的樣本放入右子樹
        
        % figure, hold on, plot(shapes_residual(ind_lc, 1), shapes_residual(ind_lc, 2), 'r.')
        % plot(shapes_residual(ind_rc, 1), shapes_residual(ind_rc, 2), 'g.')
        % close;
        % compute 
        
        E_x_2_lc = mean(shapes_residual(ind_lc, 1).^2);
        E_x_lc = mean(shapes_residual(ind_lc, 1));
        
        E_y_2_lc = mean(shapes_residual(ind_lc, 2).^2);
        E_y_lc = mean(shapes_residual(ind_lc, 2));
        
        var_lc = (E_x_2_lc + E_y_2_lc)- (E_x_lc^2 + E_y_lc^2);%左子樹的方差
        
        E_x_2_rc = (E_x_2*length(ind_samples) - E_x_2_lc*sum(ind_lc))/sum(ind_rc);
        E_x_rc = (E_x*length(ind_samples) - E_x_lc*sum(ind_lc))/sum(ind_rc);
        
        E_y_2_rc = (E_y_2*length(ind_samples) - E_y_2_lc*sum(ind_lc))/sum(ind_rc);
        E_y_rc = (E_y*length(ind_samples) - E_y_lc*sum(ind_lc))/sum(ind_rc);
        
        var_rc = (E_x_2_rc + E_y_2_rc)- (E_x_rc^2 + E_y_rc^2);%右子樹的方差
        
        var_reduce = var_overall - sum(ind_lc)*var_lc - sum(ind_rc)*var_rc;%減小的方差
        
        % var_reduce = var_overall - sum(ind_lc)*(var(shapes_residual(ind_lc, 1)) + var(shapes_residual(ind_lc, 2))) - sum(ind_rc)*(var(shapes_residual(ind_rc, 1)) + var(shapes_residual(ind_rc, 2)));
        var_reductions(i, t) = var_reduce;
    % end
    % plot(var_reductions(i, :));
end

[~, ind_colmax] = max(var_reductions);%選取減小方差的最大值的索引
%這裏之因此選擇減小的方差的最大值個人理解是減小的方差的越大,則剩下的方差越小,而剩下的方差等於左子樹的方差加上右子樹的方差,故左子樹和右子樹的方差越小,方差越小,表示數據越集中,分散的程度越小,這樣說分類越正確。
ind_max = 1;

%{
if var_max <= 0
    isvalid = 0;
else
    isvalid = 1;
end
%}
isvalid = 1;
%將對應的特徵和閾值保存起來,這些參數便是所求的feature mapping
thresh =  thresholds(ind_colmax(ind_max), ind_max);

feat   = [anglepairs(ind_colmax(ind_max), :) radiuspairs(ind_colmax(ind_max), :)];

lcind = ind_samples(find(pdfeats(ind_colmax(ind_max), :) < thresh));
rcind = ind_samples(find(pdfeats(ind_colmax(ind_max), :) >= thresh));

end

以後將training data經過剛纔獲得的feature mapping 計算binary feature,即每一個training data到達的每一個樹的葉子節點即表示爲1,其餘爲0,而後將每一個樹的binary feature鏈接接起來,具體見derivebinaryfeat.m數據庫

function binfeatures = derivebinaryfeat(randf, Tr_Data, params, stage)
%DERIVEBINARYFEAT Summary of this function goes here
%   Function: Derive binary features for each sample given learned random forest
%   Detailed explanation goes here
%   Input:
%       lmarkID: the ID of landmark
%       randf:   learned random forest in current stage
%       Tr_Data: training data
%       params:  parameters for curent stage

% calculate the overall dimension of binary feature, concatenate the
% features for all landmarks, and the feature of one landmark is sum
% leafnodes of all random trees;

dims_binfeat = 0;

ind_bincode = zeros(size(randf));
%計算binary features的維度
for l = 1:size(randf, 1)
    for t = 1:size(randf, 2)
        ind_bincode(l, t) = randf{l, t}.num_leafnodes;
        dims_binfeat = dims_binfeat + randf{l, t}.num_leafnodes;
    end
end

% initilaize the memory for binfeatures
dbsize = length(Tr_Data);

% faster implementation
%{
tic;
binfeatures   = zeros(dbsize*(params.augnumber), dims_binfeat);
img_sizes     = zeros(2, dbsize*(params.augnumber));
shapes        = zeros([size(params.meanshape), dbsize*(params.augnumber)]);
tfs2meanshape = cell(1, dbsize*params.augnumber);

img_areas = zeros(1, dbsize);
parfor i = 1:dbsize
    img_areas(i) = Tr_Data{i}.width*Tr_Data{i}.height;
end

imgs_gray = zeros(dbsize, max(img_areas));

for i = 1:dbsize
    area = img_areas(i);
    imgs_gray(i, 1:area) = Tr_Data{i}.img_gray(:)';    
    shapes(:, :, (i-1)*params.augnumber+1:i*params.augnumber) = Tr_Data{i}.intermediate_shapes{stage};    
    
    for k = 1:params.augnumber
        img_sizes(:, (i-1)*params.augnumber+k) = [Tr_Data{i}.width; Tr_Data{i}.height];
        tfs2meanshape{(i-1)*params.augnumber+k} = Tr_Data{i}.tf2meanshape{k};
    end
end

binfeature_lmarks = cell(1, size(params.meanshape, 1));
num_leafnodes = zeros(1, size(params.meanshape, 1));    
for l = 1:size(params.meanshape, 1)
    [binfeature_lmarks{l}, num_leafnodes(l)] = lbf_faster(randf{l}, imgs_gray, img_sizes, shapes(l, :, :), tfs2meanshape, params, stage);
end

cumnum_leafnodes = [0 cumsum(num_leafnodes)];
binfeatures_faster = binfeatures;
for l = 1:size(params.meanshape, 1)
    binfeatures_faster(:, cumnum_leafnodes(l)+1:cumnum_leafnodes(l+1)) = binfeature_lmarks{l};
end

toc;
%}
feats = cell(size(params.meanshape, 1), 1);
isleaf = cell(size(params.meanshape, 1), 1);
threshs = cell(size(params.meanshape, 1), 1);
cnodes = cell(size(params.meanshape, 1), 1);

% prepare for the derivation of local binary codes
for l = 1:size(params.meanshape, 1)
    % concatenate all nodes of all random trees
    rf = randf(l, :);
    num_rfnodes = 0;
    for t = 1:params.max_numtrees
        num_rfnodes = num_rfnodes + rf{t}.num_nodes;
    end
    
    % fast implementation
    feats{l} = zeros(num_rfnodes, 4);
    isleaf{l} = zeros(num_rfnodes, 1);
    threshs{l} = zeros(num_rfnodes, 1);
    cnodes{l} = zeros(num_rfnodes, 2);
    
    id_rfnode = 1;
    
    for t = 1:params.max_numtrees
        feats{l}(id_rfnode:(id_rfnode + rf{t}.num_nodes - 1), :)   = rf{t}.feat(1:rf{t}.num_nodes, :);
        isleaf{l}(id_rfnode:(id_rfnode + rf{t}.num_nodes - 1), :)  = rf{t}.isleafnode(1:rf{t}.num_nodes, :);
        threshs{l}(id_rfnode:(id_rfnode + rf{t}.num_nodes - 1), :) = rf{t}.thresh(1:rf{t}.num_nodes, :);
        cnodes{l}(id_rfnode:(id_rfnode + rf{t}.num_nodes - 1), :)  = rf{t}.cnodes(1:rf{t}.num_nodes, :);
        
        id_rfnode = id_rfnode + rf{t}.num_nodes;
    end
end
    

% extract feature for each samples
parfor i = 1:dbsize*(params.augnumber)
    k = floor((i-1)/(params.augnumber)) + 1;
    s = mod(i-1, (params.augnumber)) + 1;
    img_gray = Tr_Data{k}.img_gray;
    bbox     = Tr_Data{k}.intermediate_bboxes{stage}(s, :);
    shapes   = Tr_Data{k}.intermediate_shapes{stage};
    shape    = shapes(:, :, s);
    
    % tf2meanshape = Tr_Data{k}.tf2meanshape{s};
    meanshape2tf = Tr_Data{k}.meanshape2tf{s};
    %{
    feats_cell   = cell(size(params.meanshape, 1), params.max_numtrees);
       
    for l = 1:size(params.meanshape, 1)
        % extract feature for each landmark from the random forest
        for t = 1:params.max_numtrees
            % extract feature for each ladnmark from a random tree
            bincode = traversetree(randf{l}{t}, img_gray, bbox, shape(l, :), tf2meanshape, params, stage);
            feats_cell{l, t} = bincode;
        end
    end
    
    binfeature = zeros(1, dims_binfeat);
    for l = 1:size(params.meanshape, 1)
        % extract feature for each landmark from the random forest
        offset = sum(ind_bincodes(1:l-1, end));
        for t = 1:params.max_numtrees
            ind_s = ind_bincodes(l, t) + 1 + offset;
            ind_e = ind_bincodes(l, t+1) + offset;
            % extract feature for each ladnmark from a random tree
            binfeature(ind_s:ind_e) = feats_cell{l, t};
        end
    end
    %}
    % fast implementation
    
    binfeature_lmarks = cell(1, size(params.meanshape, 1));
    num_leafnodes = zeros(1, size(params.meanshape, 1));
    for l = 1:size(params.meanshape, 1)
        % concatenate all nodes of all random trees
        [binfeature_lmarks{l}, num_leafnodes(l)]= lbf_fast(randf(l, :), feats{l}, isleaf{l}, threshs{l}, cnodes{l}, img_gray, bbox, shape(l, :), meanshape2tf, params, stage);
    end
    
    cumnum_leafnodes = [0 cumsum(num_leafnodes)];
    
    binfeature_alllmarks = zeros(1, cumnum_leafnodes(end));
    for l = 1:size(params.meanshape, 1)
        binfeature_alllmarks(cumnum_leafnodes(l)+1:cumnum_leafnodes(l+1)) = binfeature_lmarks{l};
    end
    
    
    %{
    % faster implementation (thinking...)
    binfeature_lmarks = cell(1, size(params.meanshape, 1));
    num_leafnodes = zeros(1, size(params.meanshape, 1));
    for l = 1:size(params.meanshape, 1)
        % concatenate all nodes of all random trees
        [binfeature_lmarks{l}, num_leafnodes(l)]= lbf_faster(randf{l}, img_gray, bbox, shape(l, :), tf2meanshape, params, stage);
    end
    
    cumnum_leafnodes = [0 cumsum(num_leafnodes)];
    
    binfeature_alllmarks = zeros(1, cumnum_leafnodes(end));
    for l = 1:size(params.meanshape, 1)
        binfeature_alllmarks(cumnum_leafnodes(l)+1:cumnum_leafnodes(l+1)) = binfeature_lmarks{l};
    end
    %}
    
    binfeatures(i, :) = binfeature_alllmarks;
end


end

function bincode = traversetree(tree, img_gray, bbox, shape, tf2meanshape, params, stage)

currnode = tree.rtnodes{1};

bincode = zeros(1, tree.num_leafnodes);

width = size(img_gray, 2);
height = size(img_gray, 1);

while(1)
    
    anglepairs = currnode.feat(1:2);
    radiuspairs = currnode.feat(3:4);
    
    % calculate the relative location under the coordinate of meanshape
    pixel_a_x_imgcoord = cos(anglepairs(:, 1)).*radiuspairs(:, 1)*params.max_raio_radius(stage)*bbox(3);
    pixel_a_y_imgcoord = sin(anglepairs(:, 1)).*radiuspairs(:, 1)*params.max_raio_radius(stage)*bbox(4);
    
    pixel_b_x_imgcoord = cos(anglepairs(:, 2)).*radiuspairs(:, 2)*params.max_raio_radius(stage)*bbox(3);
    pixel_b_y_imgcoord = sin(anglepairs(:, 2)).*radiuspairs(:, 2)*params.max_raio_radius(stage)*bbox(4);
    
    % transform the pixels from image coordinate (meanshape) to coordinate of current shape
    [pixel_a_x_lmcoord, pixel_a_y_lmcoord] = tforminv(tf2meanshape, pixel_a_x_imgcoord, pixel_a_y_imgcoord);
    
    [pixel_b_x_lmcoord, pixel_b_y_lmcoord] = tforminv(tf2meanshape, pixel_b_x_imgcoord, pixel_b_y_imgcoord);
    
    pixel_a_x = ceil(pixel_a_x_lmcoord + shape(1));
    pixel_a_y = ceil(pixel_a_y_lmcoord + shape(2));
    
    pixel_b_x = ceil(pixel_b_x_lmcoord + shape(1));
    pixel_b_y = ceil(pixel_b_y_lmcoord + shape(2));
    
    pixel_a_x = max(1, min(pixel_a_x, width));
    pixel_a_y = max(1, min(pixel_a_y, height));
    
    pixel_b_x = max(1, min(pixel_b_x, width));
    pixel_b_y = max(1, min(pixel_b_y, height));
    
    f = int16(img_gray(pixel_a_y + (pixel_a_x-1)*height)) - int16(img_gray(pixel_b_y + (pixel_b_x-1)*height));
    
    if f < (currnode.thresh)
        id_chilenode = currnode.cnodes(1);
        currnode = tree.rtnodes{id_chilenode};
    else
        id_chilenode = currnode.cnodes(2);
        currnode = tree.rtnodes{id_chilenode};
    end
    
    if isempty(currnode.cnodes)
        % if the current node is a leaf node, then stop traversin
        bincode(tree.id_leafnodes == id_chilenode) = 1;
        break;
    end
end

end

function [binfeature, num_leafnodes] = lbf_fast(rf, feats, isleaf, threshs, cnodes, img_gray, bbox, shape, meanshape2tf, params, stage)

%{
num_rfnodes = 0;
for t = 1:params.max_numtrees
    num_rfnodes = num_rfnodes + rf{t}.num_nodes;
end

% fast implementation
feats = zeros(num_rfnodes, 4);
isleaf = zeros(num_rfnodes, 1);
threshs = zeros(num_rfnodes, 1);
cnodes = zeros(num_rfnodes, 2);

id_rfnode = 1;

for t = 1:params.max_numtrees
    feats(id_rfnode:(id_rfnode + rf{t}.num_nodes - 1), :)   = rf{t}.feat(1:rf{t}.num_nodes, :);
    isleaf(id_rfnode:(id_rfnode + rf{t}.num_nodes - 1), :)  = rf{t}.isleafnode(1:rf{t}.num_nodes, :);
    threshs(id_rfnode:(id_rfnode + rf{t}.num_nodes - 1), :) = rf{t}.thresh(1:rf{t}.num_nodes, :);
    cnodes(id_rfnode:(id_rfnode + rf{t}.num_nodes - 1), :)  = rf{t}.cnodes(1:rf{t}.num_nodes, :);    
    
    id_rfnode = id_rfnode + rf{t}.num_nodes;
end
%}

width = size(img_gray, 2);
height = size(img_gray, 1);

anglepairs = feats(:, 1:2);
radiuspairs = feats(:, 3:4);

% calculate the relative location under the coordinate of meanshape
pixel_a_x_imgcoord = cos(anglepairs(:, 1)).*radiuspairs(:, 1)*params.max_raio_radius(stage)*bbox(3);
pixel_a_y_imgcoord = sin(anglepairs(:, 1)).*radiuspairs(:, 1)*params.max_raio_radius(stage)*bbox(4);

pixel_b_x_imgcoord = cos(anglepairs(:, 2)).*radiuspairs(:, 2)*params.max_raio_radius(stage)*bbox(3);
pixel_b_y_imgcoord = sin(anglepairs(:, 2)).*radiuspairs(:, 2)*params.max_raio_radius(stage)*bbox(4);

% no transformaiton
%{
pixel_a_x_lmcoord = pixel_a_x_imgcoord;
pixel_a_y_lmcoord = pixel_a_y_imgcoord;
    
pixel_b_x_lmcoord = pixel_b_x_imgcoord;
pixel_b_y_lmcoord = pixel_b_y_imgcoord;
%}

% transform the pixels from image coordinate (meanshape) to coordinate of current shape

[pixel_a_x_lmcoord, pixel_a_y_lmcoord] = transformPointsForward(meanshape2tf, pixel_a_x_imgcoord', pixel_a_y_imgcoord');
pixel_a_x_lmcoord = pixel_a_x_lmcoord';
pixel_a_y_lmcoord = pixel_a_y_lmcoord';

[pixel_b_x_lmcoord, pixel_b_y_lmcoord] = transformPointsForward(meanshape2tf, pixel_b_x_imgcoord', pixel_b_y_imgcoord');
pixel_b_x_lmcoord = pixel_b_x_lmcoord';
pixel_b_y_lmcoord = pixel_b_y_lmcoord';

pixel_a_x = ceil(pixel_a_x_lmcoord + shape(1));
pixel_a_y = ceil(pixel_a_y_lmcoord + shape(2));

pixel_b_x = ceil(pixel_b_x_lmcoord + shape(1));
pixel_b_y = ceil(pixel_b_y_lmcoord + shape(2));

pixel_a_x = max(1, min(pixel_a_x, width));
pixel_a_y = max(1, min(pixel_a_y, height));

pixel_b_x = max(1, min(pixel_b_x, width));
pixel_b_y = max(1, min(pixel_b_y, height));

pdfeats = double(img_gray(pixel_a_y + (pixel_a_x-1)*height)) - double(img_gray(pixel_b_y + (pixel_b_x-1)*height));
    % ./ double(img_gray(pixel_a_y + (pixel_a_x-1)*height)) + double(img_gray(pixel_b_y + (pixel_b_x-1)*height));

cind = (pdfeats >= threshs) + 1;

% obtain the indice of child nodes for all nodes, if the current node is
% leaf node, then the indice of its child node is 0
ind_cnodes = cnodes; % diag(cnodes(:, cind));

binfeature = zeros(1, sum(isleaf));

cumnum_nodes = 0;
cumnum_leafnodes = 0;
for t = 1:params.max_numtrees
    num_nodes = (rf{t}.num_nodes);
    id_cnode = 1;
    while(1)
        if isleaf(id_cnode + cumnum_nodes) 
            binfeature(cumnum_leafnodes + find(rf{t}.id_leafnodes == id_cnode)) = 1;
            cumnum_nodes = cumnum_nodes + num_nodes;
            cumnum_leafnodes = cumnum_leafnodes + rf{t}.num_leafnodes;   
            break;
        end
        id_cnode = ind_cnodes(cumnum_nodes + id_cnode, cind(cumnum_nodes + id_cnode));
    end    
end

num_leafnodes = sum(isleaf);

end

以後利用linear regression求解paper中的公式(4)app

function [W, Tr_Data] = globalregression(binaryfeatures, Tr_Data, params, stage)
%GLOBALREGRESSION Summary of this function goes here
%   Function: implement global regression given binary features and
%   groundtruth shape
%   Detailed explanation goes here
%   Input:
%        binaryfeatures: extracted binary features from all samples (N X d  )
%        Tr_Data: training data
%        params: parameters for model
%   Output:
%        W: regression matrix

% organize the groundtruth shape
dbsize      = length(Tr_Data);
deltashapes = zeros(dbsize*(params.augnumber), 2*size(params.meanshape, 1));  % concatenate 2-D coordinates into a vector (N X (2*L))
dist_pupils = zeros(dbsize*(params.augnumber), 1);
gtshapes = zeros([size(params.meanshape) dbsize*(params.augnumber)]);  % concatenate 2-D coordinates into a vector (N X (2*L))
%數據初始化
%linear regression簡單的說就是計算A*W=Y,Y就是deltashapes,A是binaryfeatures,所求便是W
for i = 1:dbsize*(params.augnumber)
    k = floor((i-1)/(params.augnumber)) + 1;
    s = mod(i-1, (params.augnumber)) + 1;
    
    shape_gt = Tr_Data{k}.shape_gt;    
    if size(shape_gt, 1) == 68
        dist_pupils(i) = norm((mean(shape_gt(37:42, :)) - mean(shape_gt(43:48, :))));
    elseif size(shape_gt, 1) == 51
        dist_pupils(i) = norm((mean(shape_gt(20, :)) - mean(shape_gt(29, :))));
    elseif size(shape_gt, 1) == 29
        dist_pupils(i) = norm((mean(shape_gt(9:2:17, :)) - mean(shape_gt(10:2:18, :))));        
    else
        dist_pupils(i) = norm((mean(shape_gt(1:2, :)) - mean(shape_gt(end - 1:end, :))));
    end
    gtshapes(:, :, i) = shape_gt;
    delta_shape = Tr_Data{k}.shapes_residual(:, :, s);
    deltashapes(i, :) = delta_shape(:)';
end

% conduct regression using libliear
% X : binaryfeatures
% Y:  gtshapes
%利用工具包liblinear
param = sprintf('-s 12 -p 0 -c %f -q heart_scale', 1/(size(binaryfeatures, 1)));%參數
W_liblinear = zeros(size(binaryfeatures, 2), size(deltashapes, 2));
tic;
parfor o = 1:size(deltashapes, 2)
    model = train(deltashapes(:, o), sparse(binaryfeatures), param);
    W_liblinear(:, o) = model.w';
end
toc;
W = W_liblinear;

% Predict the location of lanmarks using current regression matrix

deltashapes_bar = binaryfeatures*W;
predshapes = zeros([size(params.meanshape) size(binaryfeatures, 1)]);  % concatenate 2-D coordinates into a vector (N X (2*L))

for i = 1:dbsize*(params.augnumber)
    k = floor((i-1)/(params.augnumber)) + 1;
    s = mod(i-1, (params.augnumber)) + 1;
    
    shapes_stage = Tr_Data{k}.intermediate_shapes{stage};
    shape_stage = shapes_stage(:, :, s);     
    
    deltashapes_bar_xy = reshape(deltashapes_bar(i, :), [uint8(size(deltashapes_bar, 2)/2) 2]);
    
    % transform above delta shape into the coordinate of current intermmediate shape
    % delta_shape_interm_coord = [deltashapes_bar_x(i, :)', deltashapes_bar_y(i, :)'];   
    [u, v] = transformPointsForward(Tr_Data{k}.meanshape2tf{s}, deltashapes_bar_xy(:, 1)', deltashapes_bar_xy(:, 2)');
    delta_shape_interm_coord = [u', v'];
    
    % derive the delta shape in the coordinate system of meanshape
    delta_shape_interm_coord = bsxfun(@times, delta_shape_interm_coord, Tr_Data{k}.intermediate_bboxes{stage}(s, 3:4));        
    
    shape_newstage = shape_stage + delta_shape_interm_coord;  
    predshapes(:, :, i) = shape_newstage;
    %獲得當前stage 的shape
    Tr_Data{k}.intermediate_shapes{stage+1}(:, :, s) = shape_newstage;
    
    % update transformation of current intermediate shape to meanshape,目的是爲了以後stage的訓練
    Tr_Data{k}.intermediate_bboxes{stage+1}(s, :) = getbbox(Tr_Data{k}.intermediate_shapes{stage+1}(:, :, s));
    
    meanshape_resize = (resetshape(Tr_Data{k}.intermediate_bboxes{stage+1}(s, :), params.meanshape));    
    
    shape_residual = bsxfun(@rdivide, Tr_Data{k}.shape_gt - shape_newstage, Tr_Data{k}.intermediate_bboxes{stage+1}(s, 3:4));    
        
    Tr_Data{k}.tf2meanshape{s} = fitgeotrans(bsxfun(@minus, Tr_Data{k}.intermediate_shapes{stage+1}(1:end,:, s), mean(Tr_Data{k}.intermediate_shapes{stage+1}(1:end,:, s))), ...
        bsxfun(@minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :))), 'NonreflectiveSimilarity');
    
    Tr_Data{k}.meanshape2tf{s} = fitgeotrans(bsxfun(@minus, meanshape_resize(1:end, :), mean(meanshape_resize(1:end, :))), ...
        bsxfun(@minus, Tr_Data{k}.intermediate_shapes{stage+1}(1:end,:, s), mean(Tr_Data{k}.intermediate_shapes{stage+1}(1:end,:, s))), 'NonreflectiveSimilarity');
        
    [u, v] = transformPointsForward(Tr_Data{k}.tf2meanshape{s}, shape_residual(:, 1), shape_residual(:, 2));   
    Tr_Data{k}.shapes_residual(:, 1, s) = u';
    Tr_Data{k}.shapes_residual(:, 2, s) = v';
    %{
    drawshapes(Tr_Data{k}.img_gray, [Tr_Data{k}.shape_gt shape_stage shape_newstage]);   
    hold off;
    drawnow;
    w = waitforbuttonpress;
    %}
end
%計算偏差
error_per_image = compute_error(gtshapes, predshapes);

MRSE = 100*mean(error_per_image);
MRSE_display = sprintf('Mean Root Square Error for %d Test Samples: %f', length(error_per_image), MRSE);
disp(MRSE_display);

end

function [ error_per_image ] = compute_error( ground_truth_all, detected_points_all )
%compute_error
%   compute the average point-to-point Euclidean error normalized by the
%   inter-ocular distance (measured as the Euclidean distance between the
%   outer corners of the eyes)
%
%   Inputs:
%          grounth_truth_all, size: num_of_points x 2 x num_of_images
%          detected_points_all, size: num_of_points x 2 x num_of_images
%   Output:
%          error_per_image, size: num_of_images x 1


num_of_images = size(ground_truth_all,3);
num_of_points = size(ground_truth_all,1);

error_per_image = zeros(num_of_images,1);

for i =1:num_of_images
    detected_points      = detected_points_all(:,:,i);
    ground_truth_points  = ground_truth_all(:,:,i);
    if num_of_points == 68
        interocular_distance = norm(mean(ground_truth_points(37:42,:))-mean(ground_truth_points(43:48,:)));  % norm((mean(shape_gt(37:42, :)) - mean(shape_gt(43:48, :))));
    elseif num_of_points == 51
        interocular_distance = norm(ground_truth_points(20,:) - ground_truth_points(29,:));
    elseif num_of_points == 29
        interocular_distance = norm(mean(ground_truth_points(9:2:17,:))-mean(ground_truth_points(10:2:18,:)));        
    else
        interocular_distance = norm(mean(ground_truth_points(1:2,:))-mean(ground_truth_points(end - 1:end,:)));        
    end
    
    sum=0;
    for j=1:num_of_points
        sum = sum+norm(detected_points(j,:)-ground_truth_points(j,:));
    end
    error_per_image(i) = sum/(num_of_points*interocular_distance);
end

end

test流程與train的流程相似,詳細code可見test_model.m框架

相關文章
相關標籤/搜索