建立 yolo-inria.cfghtml
從cfg/yolo-voc.2.0.cfg拷貝一份,修改batch=64, subdivisions=8, classes=1, 修改最後一個卷積層爲filter=30。shell
cp cfg/yolo-voc.2.0.cfg cfg/yolo-inria.cfg
建立data/inria.namesbash
裏面只有一行:personide
爲每一個圖片建立label文件,形式以下:測試
每一個圖片對應一個label文件,一個行人對應一行,object-class全爲0。文件分別放在/home/guru_ge/dataset/INRIAPerson/Train/labels目錄和/home/guru_ge/dataset/INRIAPerson/Test/labels目錄。spa
<object-class> <x> <y> <width> <height>
建立train.txt, test.txtcode
全部訓練圖片的路徑,每行一張圖片,位置在/home/guru_ge/dataset/INRIAPerson/。
data/obj/img1.jpg
data/obj/img2.jpg
data/obj/img3.jpgorm
建立data/inria.data視頻
修改train.txt, test.txt位置:htm
classes= 1 train = /home/guru_ge/dataset/INRIAPerson/train.txt valid = /home/guru_ge/dataset/INRIAPerson/test.txt names = data/obj.names backup = backup/
下載在ImageNet上預訓練的darknet19模型
wget http://pjreddie.com/media/files/darknet19_448.conv.23
開始訓練
./darknet detector train data/inria.data cfg/yolo-inria.cfg darknet19_448.conv.23 -gpus 0
在INRIA測試集上評測結果:
./darknet detector map cfg/inria.data cfg/yolo-inria.cfg backup/yolo-inria.backup -gpus 0
class_id = 0, name = person, ap = 88.85 %
for thresh = 0.24, precision = 0.95, recall = 0.86, F1-score = 0.90
for thresh = 0.24, TP = 509, FP = 29, FN = 80, average IoU = 76.81 %mean average precision (mAP) = 0.888518, or 88.85 %
Total Detection Time: 4.000000 Seconds
測試圖片:
./darknet detector test cfg/inria.data cfg/yolo-inria.cfg backup/yolo-inria.backup -gpus 0
跑另一個視頻:
./darknet detector demo cfg/inria.data cfg/yolo-inria.cfg backup/yolo-inria.backup MOT16-06.mp4 -gpus 0
效果:
大小:
416 x 416
速度:
CPU FPS: 0.2
GPU FPS: 90
問題:
小目標檢測不到
訓練:
./darknet detector train cfg/caltech.data cfg/yolo-caltech.cfg darknet19_448.conv.23 -gpus 0 -dont_show
每5幀提取一張,訓練集45651張圖片,測試集4406張圖片。batch_size爲64,迭代3萬次左右開始收斂:
評估:
./darknet detector map cfg/caltech.data cfg/yolo-caltech.cfg backup_caltech/yolo-caltech_40000.weights -gpus 0
detections_count = 24968, unique_truth_count = 6465
class_id = 0, name = person, 8 ap = 22.66 %
for thresh = 0.24, precision = 0.41, recall = 0.22, F1-score = 0.29
for thresh = 0.24, TP = 1431, FP = 2053, FN = 5034, average IoU = 27.87 %mean average precision (mAP) = 0.226584, or 22.66 %
Total Detection Time: 137.000000 Seconds
問題:
從map上看錶現不好,只有22.66,這多是由於這個數據集人過小,而且標註中還包含了一些被遮擋的目標,干擾了檢測結果。
咱們還測試了使用inria數據集訓練的模型在caltech上的結果,表現還要更差:
detections_count = 17643, unique_truth_count = 6465
class_id = 0, name = person, 3 ap = 9.09 %
for thresh = 0.24, precision = 0.48, recall = 0.05, F1-score = 0.09
for thresh = 0.24, TP = 315, FP = 340, FN = 6150, average IoU = 35.57 %mean average precision (mAP) = 0.090909, or 9.09 %
Total Detection Time: 46.000000 Seconds
./darknet detector demo cfg/caltech.data cfg/yolo-caltech.cfg yolo-caltech_30000.weights
使用caltech訓練結果,小目標的檢測更準確了,但也存在了誤檢的問題,這多是標註中還包含了一些被遮擋的行人,致使訓練的模型將這些遮擋物也認爲是行人,出現了誤檢。