JavaShuo
欄目
標籤
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
時間 2020-12-30
原文
原文鏈接
作者: Zeynettin Akkus & Alfiia Galimzianova & Assaf Hoogi & Daniel L. Rubin & Bradley J. Erickson 時間:2017 Abstract 這篇綜述的目的是提供關於最近基於深度學習的分割方法對腦部MRI(磁共振成像)定量分析的概述。首先我們看一下最新用來分割腦部解剖結構和腦部損傷的深度學習框架。接下來總結和
>>阅读原文<<
相關文章
1.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions論文筆記
2.
Deep Learning State of the Art (2020) | MIT Deep Learning Series記錄
3.
Embed,encode,attend,predict:the new deep learning formula for state-of-the -art NLP models
4.
Deep learning approach for facial age classification: a survey of the state‑of‑the‑art 論文閱讀
5.
論文筆記:A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
6.
Review of Semantic Segmentation with Deep Learning
7.
The Future of Real-Time SLAM and 「Deep Learning vs SLAM」
8.
Learning Contextual and Attentive Information for Brain Tumor Segmentation
9.
Pushing state-of-the-art in 3D content understanding
10.
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
更多相關文章...
•
Scala for循環
-
Scala教程
•
Swift for 循環
-
Swift 教程
•
RxJava操作符(七)Conditional and Boolean
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
Deep Learning
for...of
for..of
segmentation
mri
directions
brain
art
learning
state
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
《給初學者的Windows Vista的補遺手冊》之074
2.
CentoOS7.5下編譯suricata-5.0.3及簡單使用
3.
快速搭建網站
4.
使用u^2net打造屬於自己的remove-the-background
5.
3.1.7 spark體系之分佈式計算-scala編程-scala中模式匹配match
6.
小Demo大知識-通過控制Button移動來學習Android座標
7.
maya檢查和刪除多重面
8.
Java大數據:大數據開發必須掌握的四種數據庫
9.
強烈推薦幾款IDEA插件,12款小白神器
10.
數字孿生體技術白皮書 附下載地址
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions論文筆記
2.
Deep Learning State of the Art (2020) | MIT Deep Learning Series記錄
3.
Embed,encode,attend,predict:the new deep learning formula for state-of-the -art NLP models
4.
Deep learning approach for facial age classification: a survey of the state‑of‑the‑art 論文閱讀
5.
論文筆記:A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
6.
Review of Semantic Segmentation with Deep Learning
7.
The Future of Real-Time SLAM and 「Deep Learning vs SLAM」
8.
Learning Contextual and Attentive Information for Brain Tumor Segmentation
9.
Pushing state-of-the-art in 3D content understanding
10.
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
>>更多相關文章<<